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1. In

The Radon transform of an integrable function f on Rn  is

defined by

ef(t) - <x,O)>=tf(x)dx

Here 9 is a direction, i.e., a point on the unit sphere S , t

is a real number and the integral is over the hyperplane orthogonal

to 9 and passing a directed distance t from the origin. We

address the questions of when a given function g on S n-xIR is the

Radon transform of a function f and what regularity and decay

conditions on f can be deduced from those of g . The fundamental

result on this quesiton is due to Helgason (3]. His theorem says

that an even function g in the Schwartz space S(S n-xR) is the

Radon transform of a function f in the Schwartz space S(Rn  if

and only if

(1.1) Jo g(,t)tJdt = P (9), j = 0,1, ...

is representable as a homogeneous polynomial of degree j in 9

He also showed that under the above hypotheses f has compact

support if and only if g does and that the convex hull of the

support of f is determined by the support of g . The first result

is called the Schwartz theorem for the Radon transform and the second

the Paley-Wiener theorem for the Radon transform (4]. An L2

1 - m m ..



version of the Paley-Wiener theorem for the Radon transform was

obtained by Lax and Phillips [6]. Smith et. al. [9] showed that any

even function in the Sobolev space Hs (S n-1x) , s = (n-l)/2 , is in

the range of the closure R of the Radon transform as an unbounded

operator on L 2( n ) , but that R is not necessarily defined by an

absolutely convergent integral. Recently, Solmon (10] showed that

any even g in S(S n-1x) is the Radon transform of a Co function

f such that f(x) = O(IXl-n ) as lxi ---* , and that

f(x) = O(Ixl-n - k - 1) if and only If (1.1) holds for

j

In this paper we show that a sufficiently smooth even function

on Sn-1 xR which together with a finite number of derivatives decays

sufficiently fast at - is the Radon transform of a continuous

function f that is O( IX-n ) as lxi -. -. , and show how

satisfying a finite number of the conditions (1.1) influences the

behavior of f at -o (Of course precise conditions on the

smoothness and decay are given.) In particular, the result given

here implies the Schwartz theorem of Helgason and the recent

extension by Solmon. Our proof is based on a result on the

asymptotic behavior of the Fourier transform due to Madych [7],

rather than the Radon inversion formula as In [10]. This approach is

independent of dimension, shorter and simpler than that in (101.

Moreover, the theorem given here is more general.
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2. Oerators and Formulas

Let 0 be a point on the unit sphere Sn - 1  in R n 
, n 2

and t be a real number. The Radon transform of an integrable

function f on pn in the direction 8 at the point t is the

function

(2.1) Rf(et) = Rof(t) =foe>=tf(x)dx

where <, > denotes the usual Euclidean inner product on R n  and

dx represents integration with respect to n-1 dimensional Lebesgue

measure on the hyperplane <x,G> = t

The Fourier transform of an integrable function f on Rn is

defined by

f(C) = 12,)-n//2 f f(xle- x,c> dx,

n
where the integral is taken over all of n . Fixing 9 in (2.1)

and taking the one dimensional Fourier transform gives the well known

formula

(2.2) (R ft)^(r) = (2r)(2 (re)

The operator A is defined in terms of Fourier transforms by

(2.3) (Af),(Cl - ICII(C)

so that A 2 = - A , where A Is the Laplacean. We shall also use

3



the Calderon-Zygmund representation of A, (1],

n
(2.4) = NDX ,

J=l

where D denotes partial differentiation with respect to the j-th

coordinate and *i is the singular integral operator defined by

convolution with the kernel CnXj/Ixln+ 1 , cn a constant depending

only on n ; i.e., W iis the J-th Riesz transform.

The dual Radon transform is the formal adjoint of the Radon

transform and is defined on functions on S n-xR by

(2.5) Rtg(x) = n glo,<x.#>ld.

The Radon transform, dual Radon transform, and Calderon-Zygmund

operator are related by the Radon Inversion formula

(2.6) f = 2-1(2r) l-nAn- RtRf

133 Z27LL.L If f e LP(,n) , 1 < p < n/(n-1) , then for almost every

9, ROf(t) exists for almost every t and for a.e. 9 (2.2) is

n
valid for a.e. r Also (2.6) holds almost everywhere on n

See (101.

We use the standard multi-index notation. Thus If v Is a

nmulti-index i.e. an n-tuple of nonnegative integers, x e R , and
(D,..D) , he x a 1  X'nn  a
(D1 ...vDD n then x0 -x 1 ... , D is the differential
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1 n *operator D ...D and n Also, DJ denotes a

J-th order (tangential) differential operator on the sphere Sn - 1

with smooth coefficients and g(j)(G,t) denotes the J-th order

partial derivative of g(e,t) with respect to t

A function f on Rn will be said to be O(Ixl-m ) as

lxi --4 - if there exist constants C, M > 0 such that

If(x)l S Cxi-m whenever lx M The analogous definition is

taken for the statements f(x) = 0(Ixl -m ) as lxi --o 0 , and

g(o,t) = 0(Itl - m )  as Itl or 0

The proof of the theorem on the range of the Radon transform is

based on the following asymptotic result about Fourier transforms

which is a straightforward generalization of [7, Proposition 5].

L2es: Let f be a function on Rn such that f is integrable.

Suppose that a > 0 , m is an integer satisfying m > n + a , and

that

(i) jIl-al(t) is in Cm(Rn\(O)) , and

(ii) CIclliDul(ICl - fi()) is bounded on On for all u such that

Then f is continuous and f(x) - O(Ix -n ) as lxi -

Proof: Since f is in L (Pn ) , f is continuous and bounded and it

suffices to show that

(2.8) If(x)I S clxl - n a if lxi > 1

To see (2.8) let lxi > I , set r - lxi , x- - x/r , and write

5



f(x) - (2) - n/ 2 J I Cch(C )e I <x ' C>d t

= ( 2 ,)-n/ 2r-na Il"f h(/r)ei< x '
I'>d,

where h(C) J f(e)

The last formula indicates that to verify (2.8) it suffices to

show that the Fourier transform of hr (C) = jt h(C/r) is bounded

on the unit sphere independent of r > 1

To see this let ? be a function in C° (, n ) such that

PM) = 1 for ItJ 1 and P(C) = 0 for Itl > 2 and write

h r = h0 + h, where ho(t) = hr()?() and h,() = hr(t)(1-*(t))

Since 11ho 1  is bounded independent of r it follows that ho(x)

is bounded for all x and hence is certainly bounded on the unit

sphere. To obtain a similar conclusion concerning h, write

(2.9) D h (C) = A(C) + B(t)

Where A(t) = c I -InI- h(t/r)ri-J(1-P(i) , the c.'s are

appropriate constants, and the sum is taken over all multi-indices

such that 0 . p S . B(t) is a similar expression except that

each term contains a derivative of (1-?) of order one or higher.

Observe that

It Ia-IJlDI-hU/r)r- Iv -P = I =I1['r ~-~D-htr

and the expression in paranthesis is bounded by virtue of statement

(11) in the hypothesis. Thus

6



(2.10) IA(C) I  S 1 1 - ( - ( )

A similar observation shows that B is supported in 1 - liI < 2

and is bounded. These facts concerning A and B imply that

(2.11) ID"h'h(l) c1CI-Ia 1(1- (2C))

Now, if = m , recalling that m is greater than n + a

it follows from (2.11) that IiDvh,11 is bounded independent of r

Since this is true for all such v , we may conclude that

l xJm i(x)l is bounded independent of r and hence h is bounded

on the unit sphere. This implies the desired result.

3. The Ranae Theorem and Corollaries

It is convenient to introduce the following definition.

DhfInItIin. A function g on Sn-1x is said to be uniformly

Integrable if there exists an integrable function h on R such

that lg(G,t)l h(t) for all 9 and t

The range theorem follows.

Z9zm2 . Let g a cr(Sn-t xv) , where r 2 m * n+2+k ,k -1

Assume g(-G,-t) - g(ot)

7



(3.1) tk+l+qDi g(D)(,t) is uniformly integrable for

j = 0,1,...,m-q , and q = 0,1...,n+l; and

(3.2) f g(e,t)ttdt = Pe(,) is representable as a homogeneous

polynomial of degree f for e = 0,1...k

Then there exists a function f in C 8R n ) , (s r+i-n , n odd and

s = r-n , n even) , such that f(x) = O(Ixl - n - k - ) as lxi -- ce and

Rf(G,t) = g(G,t) for all * and t Moreover, for each X G Rn

the inversion formula

(3.3) f(x) = 2 -1(2) 1 - n  n-Rtg(x)

holds.

Remrk. When k = -1 , (3.2) is taken to be vacuous.

Proof. The continuity of g and (3.1) with q = j = 0 imply that

g is uniformly integrable. Thus, the function f defined in polar

coordinates on an by

(3.4) ((-)) = (2)) / g*(r) - (2a) - n / 2  g(,t)e- trdt

n n
is bounded on n and continuous on t n( 0 ) .We show that f

satisfies the hypotheses of the Lemma with a = k+i . Leibnitz

formula gives

S



(3.5) (d/dt) n+(tm g) = tk++q (q)
q=0 m~k

with the cmk known constants. By (3.1) each term on the right

hand side of (3.5) is uniformally Integrable and hence so is the left

hand side. Since g (n+1) is continuous, solving for g(n+1) in

(3.5) shows that g(nl) is uniformly integrable. Thus g is

continuous on S n- 1xR and uniformly 0(r - n - 1) as r --# co This,

(3.4), and the fact that f is bounded imply that f is integrable

and hence its inverse Fourier transform f , is continuous.

We will show at the end of the proof that the polynomial

condition (3.2) can be replaped by

(3.6) J g(e,t)t dt = 0 , e = 0,1,...,k

without loss of generality. Accepting this for now, the uniform

integrability assumption of (3.1) allows differentiation under the

integral sign in (3.6) giving

DJ g(O,t)tI dt- 0 , e = 0,1,...,k ; J = 0,1,...,m

Since tk+1 D g is uniformly Integrable, the above and Taylor's

theorem give that

(3.7) j(tPD, g)^(r)j - 0(r k + - p ) as T --4 0 when 0 S p S k+1

9
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Let 0 S Jul S m = n+2+k . By (3.4), in polar coordinates

lUIDu(it,-k-1 f) is a sum of terms of the form

•.e ( , ~(-k-i (D g) (te)) , e = 0,1.... lI < m,

j = 0,1.....Il-e . This, in turn, is a sum of terms of the form

(3.8) -k-+P(tPD, g)(re), 0 S p 5 e < Jul S m ,

where the Fourier transform is in the sense of distributions when

p > k+1 . If 0 5 p 5 k+1 , (3.7) and the uniform integrability

assumption (3.1) show that terms of the form (3.8) are continuous on

IR n-(0 1 and bounded independent of 9 . Suppose

m I Jul I t > p> k+l . Leibnitz formula shows that
kp-k-1 (q)

(d/dt)P-k(tPD g) is a sum of terms of the form tk+D+q (q)

q = 0,1,...,p-k-1 Each such term is uniformly integrable by (3.1).

Thus (tPD0 g)^(re) is continuous on r > 0 and uniformly

0 (Tk+
-p) as r --. - and 0 . Hence (3.8) is bounded in this case

also. The Lemma now implies that f(x) = O(Ixl- n - k -l) as

XI xI

Since f is continuous and O(lxl-n) as lxi -. , Rf is

continuous also. Moreover f a LP(Rn ) for all p ) 1 By Remark

(2.7), (2.2) holds a.e. This, together with (3.4), shows that

Rf - g a.e. and thus, by continuity, everywhere. Again Remark (2.7)

gives that the inversion formula (2.6), and hence (3.3), holds a.e.

To show that it holds everywhere it suffices to show that the right

hand side of (3.3) is continuous. If n is odd, then (2.3), (2.5)

and the fact that g 4 Cr(Sn-lxP) show that the right hand side of

(3.3), and hence f , i C. If n is even, then write

10



A n-1 A(A (n -2 )/2 ) and use the Calderon-Zygmund representation of

A , (2.4). This, together with the fact that the Riesz transforms,

j , reduce differentiability by at most 6 for any 4 > 0 , shows

that the right hand side of (3.3), and hence f , is Crn This

completes the proof of the Theorem with the exception of showing

that, without loss of generality, (3.2) can be replaced by (3.6). To

see this, note that by (10, Lemma 7.41, there exists a C" function

h vanishing outside of the unit ball in n such that

R 0 h(t)tt dt = P,(,) , t = 0,1,...,k

where the P are the same polynomials as those that appear in

(3.2). Replacing g by g - Rh does not effect (3.1) but replaces

(3.2) by (3.6), and f by f - h which has no effect on the

smoothness of f or its rate of decay at o The proof is

complete.

Rgmak. The proof actually shows that when n is even then all

partial derivatives of f or order r - n satisfy a Hblder

condition of order a for any a < 1 . Also, it follows from [9,

Theorem 12.61 that the classical Radon inversion formula

f - 2-1(2,)-n R tA n-g is valid everywhere.

We now give a few corollaries of the Theorem.

The Schwartz space S(S n-1x) consists of those C functions

on Sn-IxE which, together with their derivatives of all orders,

11



decay at infinity faster than the reciprocal of any polynomial

in t .

Coollar". (10]. Let g S(Sn- xE) and suppose that

g(-G.-t) = g(e,t) Then

a) g = Rf for some C" function f such that f(x) = O(Ixl- n )

as lxI --

b) f(x) = O(Ixl-n-k - ) If and only If (3.2) holds for

e = 0,1,...,k

c) If f(x) = O(Ixl-m) then for all v , n

Dtf(x) = O(ixl- -,I)

Proof. When g e S(S n-lx) , (3.1) is satisfied for all choices of

J, q and k . So a) and b) are immediate consequences of the

Theorem. To see that c) holds observe from (2.2) that

RDVf = *I(R f)(IulI) and by integration by parts that if g = Rf

satisfies (3.2) for f = 0,1,...,k , then *ug(IUL) satisfies (3.2)

for I - 0,1,...Ivl+k , and apply b).

C2orllarL. Let g e Cn+l(sn-lxR) and suppose that

g(-9,-t)=g(e~t) . Assume that (3.1) Is satisfied with k - -1

Then the inversion formula for Rt

(3.9) g - 2 1 (2n) 1-nRn-1Rtg 

holds everywhere.

12



Proof. By the Theorem Rf = g everywhere with f given by (3.3).

Rmark. Inversion formulas for Rt have been given earlier for

functions in S(S n- 1x) . Helgason [3] gave an inverison formula

when (3.6) is satisfied for all nonnegative integers I . Gonzalez

[2] and Hertle [5] proved that (3.9) holds for n odd and Solmon

(10] showed it holds in all dimensions.

The last corollary is a sort of Tauberian theorem.

goroIar". Let g C n+2(S n-x1t) be such that g(-e,-t) = g(O,t)

Suppose that (3.1) Is satisfied for k = 0 Then g is the Radon

transforn of an integrable function f if and only If

IFW
(3.10) f g(,t)dt - c

where c Is a constant, independent of 0

Proof. Since the hypotheses of the Theorem are satisfied with

k - 0 , g is the Radon transform of a continuous function that is

O(xj-n -l) as xj -- * - , and hence of an integrable function. So

the condition is sufficient. The necessity of the condition is an

immediate consequence of Fubini's theorem.

5MMk. Peters [8] has shown that the Radon transform of the

function f(x) - sin(IxI2)/(,x,2) , in the plane, is o(ItI- ) as

13



t -. . Since f is a radial function its Radon transform is

independent of * and hence so is J Rf(e,t)dt . Nevertheless f

2is not integrable on R Hence condition (3.10) is not sufficient

by Itself to imply the integrability of f
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Multivariate Interpolation and

Conditionally Positive Definite Functions
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1. Introduction

A variety of methods exist for fitting an interpolating

surface through data v1 , .... vN given at a scattered set of

points x1 ..., xN in the plane R2 (or higher dimensional space

Rn). For a recent survey see (7]. Two methods that performed quite

well in comparative numerical tests [6] are: Thin Plate Splines

(TPS) (8] and Multiquadric Surfaces (MQS) [9]. A rather

complete theory, applicable to TPS, but not MQS, has been developed

by Duchon (3] - [5]; also see (14]. Theoretical results about

MQS are more recent and less complete, [7]. (12], (13].

In (121 an extension of Duchon's theory was developed which

includes MQS. That development relies heavily on Fourier

analysis. Here we present refinements of those results which

Include error estimates and avoid the use of Fourier transforms.

In this development certain features of Duchon's theory are

preserved. In particular the interpolants s(x), x e Rn, can be

characterized as being solutions of a variational problem in which

a translation Invariant quadratic functional Is minimized subject

to constraints s(xI) - v As in Duchon's theory the quadratic

functional is associated with a Hilbert space norm and a

reproducing kernel K(xy) - h(x-y). For TPS, h(x) - lxi 2 loglxl
n

and for MQS , h(x) _ -/s2 Ixl . Here Ixi 2 1 (xk 2.

k-i



Unlike Duchon's exposition, where the choice of norm takes

precedence, the development here starts with the function h and

uses it to define an appropriate norm. Another difference in our

results is that we do not require any sort of dilation invariance.

The interpolants s are expressible in terms of translates

of the function h. In the simplest case (m=O, below)

six) - I c h(x-x4). In the general case s includes a polynomial

J=1

of degree less than some fixed integer m and the coefficients c

N

are restricted by the requirement that 2 c p(x = 0 for all

J=1

polynomials p of degree not exceeding m-i. Thus we have

N

(1.1) s(x) = I c 3 h(x-x3 ) + k a xa

-1 I01<m

where the constants c3 and ka must satisfy

N
(1.1a C hx I~ + a i. vie 1=1,...N

'k I
(1.1.) j, - J  + kx a . i ..

j=1 Il <m

N

(1.1b) Ic x -0 al<m.
J=1

As usual, a = (a , ....an) denotes an n-tuple of non-negative
n a

integers, lal = al+...+an and xa - n I(xk )
k-i



For the case of Thin Plate Splines, the equations (1.1) have

direct physical interpretations. For that case, h is as mentioned

above and m is 2. The c *s are proportional to forces applied at

the points x and the moment conditions (1.1b) are required for

equilibrium, see [9]. Analogous interpretations can be made for

cubic splines on the line; there n-1, h(x) = Ixj3 and m-2.

It is useful to record some elementary observations about

(1.1). In matrix notation we have

Ac + Bk = v

BTc = 0

where A is NxN and B is Nxm' with m'=dim P (Rn) = (m-l+n)!
n-1 (rn- I) Fn-!

Letting R% denote the range of B we see that (l.1b) saysN -
that c is in R', where R cE CN bT c = 0 for all b, RFJ1.

Consequently, (1.1) will have a solution if and only if v is in

A(R') + RB. Now CN A(R') + RB iff Ac e RB for all

cer R; (0). Furthermore, Ac i RB (=RB ) iff wT Ac o 0 for some

w RB . Thus, (1.1) can be solved for arbitrary v if and only if

for every ce R1 (0 there is a we R' such that wT Ac * 0.

In addition we note that C N = A(R') + RB requires

dim A(R) - dim R-. Hence, if (1.1) can be solved for arbitrary v

then c in (1.1) 1" uniaue.

A condition that is sufficient to make (1.1) solvable for

all v is: CT Ac > 0 for all ce R B - (0). This condition can be

3



N

restated as: I _- h(x,-x j ) c > 0 for all c - 0
ij=l

satisfying (1.1b).

The last inequality offers motivation for (1.2) in the

following definition. However, the true motivation for (1.2) is

that it is needed (see equation (1.3) below) in order to obtain

our variational setting for the interpolation problem (1.1).

Definition: If h is a continuous function from PRn to C then h

is conditionally positive definite of order m, provided that for

every positive integer N,

(1.2) c I c h(xi-xj) . 0

iJ=1

holds whenever x1 ..... xN are distinct points in n and cl, .... cN

are complex numbers that satisfy (1.1b). We define Qm( (,n ) to

be the class of conditionally positive definite functions of order

m on On.

In the case m=O the above definition reduces to the usual

definition of a positive definite function. Thus, by Bochner's

theorem, Q0 (,
n ) is the set whose elements are Fourier transforms

of finite positive Borel measures. For m>O, an analogous

ni
characterization of the functions in Qm(,n ) is given in

E8, Chapter II, Section 4.4].

It is not always easy to determine whether a given continuous

function h is conditionally positive definite. Often the most

direct method is to calculate the (distributional) Fourier

4



transform of h and check whether it is positive. This was done

for several examples, including h(x) / +Ix in (12].

In the case that h(x) is a radial function the task of

determining whether it is conditionally positive definite can

often be considerably simplified by applying Micchelli's

generalization [13] of Schoenberg's theorem [14] concerning

completely monotone functions. This result can be stated as

follows: If F(t) is real valued and continuous for ttO then

2 nh(x) = F(Ix 2 ) is in Q for all n if and only if

(-1).)m+t F (m+) (t) 0 for all t 2 0 and all = 0,1,2.....

Application of this theorem with F(t) = t log t, m = 2, and

F(t) = - /2+t, m = 1, provides an easy verification of the

conditional positive definiteness of h(x) = Jx2 logjx and

h(x) - - x

We now turn our attention to the variational setting for the

interpolation problem. This setting is the space Ch described by

Theorem 1.1 below. First we recall some notation.

Let Pm-1(R n ) denote the space consisting of polynomials on Rn

± n)
of degree not exceeding m-1. We define P_(R n to be space of

all measures v on n that have support consisting of a finite

number of points and satisfy v(p) = 0 for all p in Pm-1(,n).

N

Note that P = cI bx is in Pm-i if and only if (1.lb)

is satisfied. Here 6x Is the measure corresponding to a unit mass

5



at the point x, so 6x(f)= f(x). In Theorem 1.1 v*h denotes the

usual convolution product. For example, 8 *h(x) h(x-y).
y

Theorem 1.1: Given maO and h In Qm(,n) there Is a
subspace C (U n) of C(Rn), with a semi-inner product

h

(.,.)he such that

(a) the null-space of the semi- norm is PM1 (Rn),

(b) Ch/PM_ 1 is a Hilbert space,

(c) iff V is in PL ( n ) then P*h is in Ch(R ) and

(v*hf)h = v(f) for all f in Ch((,n)

Furthermore, these properties uniquely determine Ch(Ln) and

(''')h"

The proof of Theroem 1.1 is carried out in section 3. It

Includes an explicit construction of the subspace Ch which does

not involve Fourier analysis. On the other hand, except for

certain special examples (see below), Ch is rather awkward to

describe without this basic tool.

The results in Section 2 show that C h contains interpolants

of the data vi .... vN at the scattered set of points xi .... IxN.

Moreover it is also shown that the interpolant of the form (1.1)

is in Ch with minimum Ch norm.

The connection with reproducing kernel Hilbert spaces can be

seen as follows. If m-O, we can take w 6 x in part (c) of

Theorem 1.1, to obtain

f(x) - (x *h,f)h - (f5 x h)h

Thus, K(x,y) = h(x-y) is a reproducing kernel for the space

6



Ch if m-O. For background on reproducing kernels and positive

definiteness we recommend [2]. An extended notion of reproducing

kernel is defined in (4] and (16]; in essence, Theorem 1.1 says

that K(x,y) = h(x-y) is such a kernel.
N

The necessity of (1.2) can be seen by taking P = c a x
i=1

and f = v*h in (c) to get

N N

(1.3) (P*h,v*h) h = c c 'vh(xI) = ci c h(xt-x )
i=1 ij=l

We conclude this section with several examples of h and

corresponding Ch.

A. n=1, m-O, h(x) - e - I, Ch = (f e AC n L2(R) : V c L2(R)),

(f'f)= 2 Jflf(x)12 + If' (x) 2}dx.

B. n-1, m-, h(x) - -lxi, Ch = f 1E AC f' L2 (R)),

(f'fh = If" (x)I2 dx.

C. Consider the cases included in Duchon's theory. Example B,

but not A, is such a case. Other examples include interpolants in

Pn which satisfy A ims(x) - 0 whenever x is in Rn\(xl ..... N )

and which minimize the functional (ff)h f(x) dx, where

7



A Mdenotes the m-th iterate of the Laplace operator, m must be an

Integer greater than n/2, k=m/2, and Ak is suitably interpreted if

k is not an integer. For details see (4]. Here h(x) = clxi m - n

or clxim - n logjxj depending on whether n is odd or even; c is a

normalizing constant depending only on m and n.

D. As mentioned earlier, the function h(x) = -/62+iX, 2  is in

QQ((n) for any n. In this case the space Ch and the corresponding

quadratic form are very awkward to describe without the use of

Fourier transforms.

=a



2. Variational characterization and error estimate.

In this section we use the space C h described by Theorem 1.1

to obtain a variational formulation of the interpolation problem we

started with. We also look at certain bounds on the difference

between a function f E C h and an interpolant s that matches f on a

set of points x 1 ..... N .

We begin with the question of whether C h can interpolate

arbitrary data.

Proposition 2.1: Fix mkO and h in QM (,Rn). Let (x 1 ... ,XN) b

n
a finite subset of R . Thefollowina statements are equivalent:

(a) For ever v In CN there is an f in C h tha@t satisfies

f(xi) =v i  i=l,...,N.

N

(b) I c h(xj-xi) > 0, for every (c1, ... ,c) . 0 that
i- D- N

satisfies (1.1b),

(c) (1.1) can be solved for every v in C

Proof To see that (a) implies (b), suppose (b) is not true.

N

Then for some clI...cN as above we have I - cj h(xj- xi - 0.

9



N

From (1.3) we see that (L*h,*h)h = 0 where V = c i x

i=1

By part (c) of Theorem 1.1 this implies that V(T) = 0 for all f in

N

Ch. But then i f(xi) 0 and it is impossible to have
i=l

f(xi) = ci . This is contrary to (a).

That (b) implies (c) was noted in the introduction (just

before the definition of QM ) .

If cI and ka solve (1.1) then (1.1a) says s(xi) = vi. Here

N
s - P'h + p with P c 1 6x and p(x) ka x By

I=1 l l<m

(1.1b), v is in Pm-1 ( n), so s is in the space C h . From this we

see that (c) implies (a).

The next result shows that solutions of (1.1) correspond to

interpolants from Ch that have minimum norm.

Theorem 2.2: Fix maO and h in Q (Rn). Given v = (v1 , .. .vN) in
mN

~N nC and distinct points xl .... xN In R let

V - {f e Ch : f(xi) - vi, i-,...,N}. Then V is non-empty if and

only if there are constants c and ka  that satisfy (1.1). In

that case

10



N

(2.1) s(x) = cj h(x-xj) + k xa

j=1 10.I <m

belongs to V and for every f in V

(2.2) 2 2 2
h = '1sh + h

Proof: Let M be the subspace of C N that is orthogonal to the

subspace P - {(p(xi)I....P(XN)) : p e Pm 1 (Rn)), so that CN = M $ P.

N
For c in CN let Vc = c 8. Note that c E M iff v E- P

Suppose V is not empty. Choose f in V and let P *h be the
0 0

orthogonal projection of f onto the subspace W = (c *h : c E M).

Then (w,f - V *h)h = 0 for all w in W. Equivalently, for all c in M,

(V *h, go)h 0 where go = fo-Po*h. By part (c) of Theorem 1.1,

N

cI go(x) = 0 for all c in M. Since P = M there must be a
i-i

polynomial p In Pm- 1 such that g0 (x1  = P(xi) for i=i....N. Thus,

the function a - 0*h+p satisfies s(xi) - f0 (xi) M vi, i-1,...,N.

From this it is seen that a solution of (1.1) is provided by the

coefficients associated with P and p.o

Conversely, if (1.1) admits a solution then V s 0 since the

11



function given by (2.1) will be in V. To establish (2.2) we need

only show that (s,f-s)h 0 0. As noted in the previous proof,

s = P*h+p with v in Pm-1 and p in Pm-* By Theorem 1.1,

(s,f)h = (P*h,f)h M v(f)

and

(ss) h = (P*h,s)h = V(i).

Now P(T) - P(s) because f(xi) = s(xi). for i=1,...,N. Hence

(sf-s) = 0.

For the remainder of this section, we fix mzl and look at

bounds on the size of Is(x ) - f(xo) I when s is the result of

solving (1.1) with values coming from a function f in Ch (so that

vI = f(xi}, I = )....N). The bounds we obtain will depend on how

x is situated in relation to the interpolation points xi; roughly

speaking x must be close to a certain number of the points x i in

order to get a good bound on 5s(xo) - f(x0 )I. More precisely, x°

must be close to a subset Y =Y(x0 ) of (x I ..... xN) that is unisolvent

for P3 -. This set Y will have m'=dim Pm-1 points and for each

y in Y there will be a unique ty in PM-I with y(y) = 1 and

t (y') - 0 for y' in Y-(y).

Some additional notation will be helpful. If K is a subset

of R n, lt diam K - sup(Ix-x' J:x,x'e K). Also, let

1fllK = sup (lf(x)I:xc K). Put U 1 (h,r) a inf (1h-pilB(C):p= PM3 1 )

where 5(g) is the ball of radius c centered at 0. Recalling

12



standard results on polynomial approximation, we note that

E M1(he) - O(c m }  when h is sufficiently smooth.

Theorem 2.3: Fix mzl and h in Qm (n). Given f in C h and

x I s ....IxN 4n Pn
, put V = (g Ch : g(x) = f(x1 )0 i=i, ... ,N} and

let s be an element of V with minimal C h norm. For each point x o

in Pn choose a P 1 unisolvent set Y(X ) c x.

Then

(f(X0) _ S(Xo)1 S 11fi h [1+A(x )] (Em-1lh,d))1/2

where d = diam(x0 ) u Y(Xo) and A(x) = I ity(x)I is the

YY(x0 )

Lebescue function for PM-1 interpolation at the points of

Y(X0 ).

Proof: Consider the measure P Y  defined by
X

0

(2.3) (g) g(x o) - e(xo)g(y).

0 Ye Y

For every y E Y, P o (t 0. Thus is in P-. Also,

S(?ir) a 1(x ) - i(x ), since f-s vanishes on (xI, ... x Y.
X0 0 0N

Hence, Cauchy's Inequality and (2.2) give

13



(2.4)

If(x )-s(x )I I(v y  *h, f-s)_ IL) *hil If-s!1 h !Ivyo*h .

To complete the proof, we need only establish

(2.5) OUYo* hIl2 s (1 + A(Xo)]2 E (h,d).

(2.5 h 0 M-1

To show this, let - C(P n ) --, Pm 1 be defined by

g I g(y)t . From (2.3), we have
ye Y

v (g) = 6 (I-v]gx 0x0

where Io o and 8X - V(x ). For t e R n, define

T t : C(P) - C(R n ) by Ttg(x) = g(x-t). Note that

t yx *h = x h I t. y(Xo) Tyh.

o0  ye Y

Hence, by (c) in Theorem 1.1

(2.6) Hv *hII 2 = 6 oI-R] T (X' )T
h x0  x 0  ye Y o J

s (1 + I I4ty(Xo)I) max 18Xo(I-]T thI.
YF-y te (xo)UY 0

For p in P-l'
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[I- ]T th = [I--]Tt(h-p).

Using 1I& I-n]gI S (1 + A(xo)] ugfxo}y with g Tt(h-p)

we get

6x (I-n]T thI s 1 + A(x0)] 11T t(h-p)1 (x 0 )UY

If K is any subset of p n and t E K, then

1Ttg1K S U~gH B(dam K)"

Taking K = {x )uY and g = h-p, we see

18X [I-R]Tthl !s [1 + A(x 0 )] IIh-plaB(d)

for every t in {x0 )UY and every p in P m-1* On the right side,

I!h-PlfB(d) can be replaced by E M 1 (h,d); then from (2.6) we obtain

(2.5).
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3. Spaces with a reproducing property.

This section is devoted to a proof of Theorem 1.1. We start

with uniqueness. The following theorem characterizes the

functions f that belong to C h and also their norm if 1 h* This

characterization depends only on the choice of h (and m and n of

course) since it is based solely on the semi-norm given by (3.2).

Hence any space Ch that satisfies Theorem 1.1 is uniquely

determined by (n, m and) h.

Theorem 3.1: Fix maO and h In Qm(R). Let Ch be any space of

functions on Rn that satisfies the

conditions of Theorem 1.1. Then a complex valued function f on

IR n is in Ch(,n ) iff there is a constant C(f) such that

(3.1) IV(iT)I : C(f)1zAI

for all P _ in P ( ). Here ii II denotes the semi-norm on P
o__i-1 m-1

defined ]y

(3.2) llul = { nix}) vl(Y)) h(x-y)}.

x R YER

Furthermore, if f is in Ch and C,(f) is the infimum of all the

constants C(f) for which (3.1) holds, then C,(f) = 11fl''h"

Proof: If f is in Ch then by part (c) of Theorem 1.1

( I(v*h f)hl s 11v*h{ h  1 f 11h"

16



From (1.3) and (3.2) we have Ii*hi h = ll pP. Thus (3.1) holds with

C(f) = llfh . This proves C*(f) 11f1l and the "only if" half of the
h* h

assertion about (3.1).

To prove the other half of the theorem fix an f for which a

constant C(f) exists and observe that (3.1) holds with C(f) = C,(f).

Let H = Ch/Pm_1 and write (" *)H for the inner product on H
1

Induced by ('') h* Define L P M-1 --* H by Lv = O*h + Pro-l"

Then llLP1lI H = IhllhII = IIVII. Using (3.1) we obtain

(3 .3 ) I I s C (f) IL WI H

H h

where p(v) = v(f) defines -p as a linear function on Pm1l From

(3.3' , If Lv1 = LP2 then o(v 1) = ( (V2). Thus there is a unique
1

function # on W = L(Pmi) such that v(v) = f(LP) for all i) in
~1

Pm-1" Clearly # is linear and satisfies 1+(w)l S C*(f)iiwli for

all w in W.

Since H is a Hilbert space, there is a v in H with

I'viIH S C,(f) such that 4(w) = (wv)H for all w in W. Choose g in

Ch so that v = g + Pm-1 , Then

v(fl - #(Lv) = (Lv0v)H = (P*hg)h = (g).

But if (?) - a(g) for all v in Pm- then, by Lemma 3.2

below, - 1 Pm- In that case, f - g + p with p (and hence p)

in Pm-i" We conclude that f is in Ch and

17



11 h = 11gl h  = I1v1lH S C,(f).

This completes the second half of the proof.

Lemma 3.2: Let f be a complex valued function on Rn. If V(f) = 0

for all v In P (R) then f e Pi ( n ) .

Proof: Let m'=dim PmI(, n ) and select points x, .... xm , in so

that a basis (C1 ... tm' ) exists for P M-I with t(xj) = 5ij.

For each x in R define v byX m'

VX(V) = V(x) - i et(x) xi).

Note that vx is in P m-i' since v x(I) = 0 for i=i... m' By

hypothesis, x(f) = 0 for all x. Thus
n

f = flxi) t
i=1

which completes the proof.

Existence of the space described by Theorem 1.1 will be

proved by using the following.

Theorem 3.3: Given maO and h in Qm(, n) there is a Hilbert space H

and a one to one linear transformation U of H into C(R/P m-(R)
.1

such that for every v in P 31  there is a vector q in H that

satisfies

18



(I) U7L = P*h + Pm-1 and

(ii) (') ) whenever U = f + Pm- *

Proof of Theorem 1.1: Take Ch = U (U : e H} and define a semi-

inner product on Ch by

(f.Dg)h = IirJ1[f~Pm-i], U-1[Ig+P M 1]]H*

Since U is one to one we see that (f'flh = 0 iff fe Pml" Thus

Ch/Pm_ is the inner product space that results by identifying

f and g whenever I1f-gIIh = 0. Evidently, U gives a unitary

isomorphism betwen H and Ch/Pml . This verifies parts (a) and (b)

of Theorem 1.1. Part (c) follows easily from (I) and (ii). Since

uniqueness was established by Theorem 3.1, the proof is complete.

Proof of Theorem 3.3: If v and X are measures on OZn, and have

support consisting of a finite number of points, we take

(LA) = f h(x-y) dviy) dkix)

(3.4)

X X-"x) v(y) h(x-y).
x,y

The resulting function is linear (conjugate linear) in its first

(second) argument. For V e PM-1 we have (P,P) a 0 because

h is in Qm . Also, the polarization identity gives (X,v) = Fv-,T)

19
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for v, X in P-" This shows that (-,.) is a semi - inner

product on P Thus P IN, where N ( { Pm-1 0),

is an inner product space. Let H be its Hilbert space completion

and let : Pm-1 -* H be the map given by nP = v+N. Note that

(7r,-ffV)g = (V,V).

As in the proof of Lemma 3.2, we choose a PM-1 unisolvent set
rn-

of points x1 ,... ,X in n and define v P by

mI

x = 6x - e X(x)8x i
ilx

We define U : H - C(I n )/Pm_ 1 by Un = f + PM-1 where

(3.5) f (x) = q', x)H.

To verify that f is continuous we note lvrv t - Irvz 11H "'t -vz

and use

(3.6) lrm 1lPt  - pz 1 = 0.

t--#z

To see this, write P t - Vz  8 - + where

m'
tZ

o t= z (t (z) - l(t)] 6
i-i

Using sesqui-linearity and (8 x,8) = h(y-x),
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2t,z t,z11 t - V 12 2h(O) - h(z-t) - h(t-z) + (a '  a

+ 18t  - .ortz + (at'z at-8 ).

il at t z

m

Now (6t - ' .o ) = t (lz) - t(t)] [h(xI-t) - h(x1 -z)]

which tends to 0 as t --+ z. After similar analysis of other

terms, we obtain (3.6).

Next we show that

(3.7) P(f ) = (-v,n)H

for all P Pm- Writing V = V{x) 8 and using

x

0 = V( i) 1 ,(X} ti(x) we find

x

(3.8) v = lx V .

x

From (3.5), Li()) = Li -x) = Pv{x) ( ,) Applying

x x

(3.8) to this, we get (3.7).

The map U is clearly linear. To check that it is one to one,

suppose Un - Pm-1  Then f 17 is in PM-1 and from (3.7) we have
in-.1

0 - (1',)H for all P in Pm-1, Since the image of n is dense in

H, we conclude tht n - 0. Thus U is one to one.

To complete the proof we show that (i) and (i) hold for
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u p-. From (3.5),

17 ( Z ) z ( ,- z H = (V ,V Z )

= l(x) P'(y) h(x-y)

X,y

- P(y)[6z{x -[bZ t(z),Sx W, h(x-y)
x,y i-,1

m °

= (y) [h(z-y) - (z)h(x,-y)]

y i-i

Thus f = P*h + p which gives (i. If UR = f + P M-1 then

f = f + p and (ii) follows from (3.7).
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Polyharmonic Cardinal Splines

W. R. Madych* S. A. Nelsont

Abstract

Polyharmonic splines, sometimes called thin plate splines, are distribu-
tions which are annihilated by iterates of the Laplacian in the complement
of a a discrete set in Euclidean n-space and satisfy certain continuity con-
ditions. The term cardinal is often used when the set of knots is a lattice.
Here, in addition to developing certain basic properties of polyharmonic
cardinal splines, it is shown that such splines interpolate numerical data
on the lattice uniquely.

1 Introduction.

From one point of view, I. J. Schoenberg's theory of univariate cardinal splines
of odd order, see [15), can be regarded as a development of certain properties of
those functions, f, which satisfy

(d 2kf
d =0

on the complement of the integer lattice Z and enjoy appropriate smoothness
conditions on all of the real line R. A natural extension of these ideas to the
multi-variate case would be to consider those functions f which satisfy differen-
tial equations analogous to (1) on the complement of the integer lattice Z" in
RI and enjoy certain regularity properties on all of R". In this development we
consider the case where the differential operators are powers of the Laplacian.
Many of the results in [15] have appropriate analogues in this case. In this paper
we consider only the basic properties of such splines together with the problems
of existence and uniqueness of cardinal interpolation.

The motivation for our work came from an attempt to obtain a 'B spline
like' basis for certain global interpolation schemes in R". More precisely, given a

SDepartment o( Mathenuatics, University of Connecticut, Storrs, CT 06268. Both authors
wen partial mApported by a grant fron the Air Force Office of Scientific Research, AFOSR-
86-0145

tDeprtmeat of Mathematics, Iowa State Univerity, Ames, IA 50011.
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collection of points i,..., z., in R", consider the linear subspace of functions,
f, of the form

(2) A() = aj(z - X,)
j=1

where 4 is some fixed smooth function and a, ... , am are arbitrary coefficients;
call this subspace V#. Such functions are natural and simple candidates for
interpolants of multivariate scattered data. In several interesting examples,
such as 4.(z) = I:l or O(x) = v , the function 4. does not decay at
infinity; see [7,8] for these and other examples. As one may suspect, this causes
various problems, both practical and theoretical. However, it is not difficult to
see that, at least for the examples mentioned above, certain linear combinations
of translates of 4, namely functions of form (2), decay at infinity rather quickly.
It was hoped that such combinations would form a nice basis for VO analogous to
that formed by the B splines in the classic univariate examples. In attempting
to formulate a tractable theory we were led to consider the case where the set
of points z1 .... Zm becomes the integer lattice Z n in R' and the functions 0
are fundamental solutions to certain powers of the Laplacian. This motivated
us to examine Schoenberg's work, [14,15], more carefully and resulted in the
development introduced here.

The idea of interpolating in terms of linear combinations of Green's func-
tions to powers of the Laplacian is not new. Although the earliest published
work devoted to the subject seems to be [101, it is quite clear that many mathe-
maticians were aware of the idea and many of its consequences, either from the
reproducing kernel Hilbert space viewpoint or from the transparent generaliza-
tion of the variational aspect of univariate spline theory to the multivariate case;
for instance see [9]. For examples of more recent work see [6,7,8,13]. Among
the shortcomings of the obvious theory were the fact that such 'splines' do not
have a localized basis and the restriction to the case of the finite domain. In [6]
Duchon developed a variational theory for interpolation to all of R" involving
a finite number of constraints which overcomes the second mentioned short-
coming in an elegant way and allows for interesting generalizations. Although
our development concerns an infinite number of constraints and does not rely
on the variational properties of splines, it may also be regarded as a certain
generalization of (6].

While working on an early draft of our theory we discovered that the subject
of 'cardinal spline interpolation' was a booming business; for example see [31,
[4), and the references cited there. (In addition to references on multivariate
cardinal splines, the extensive bibliography in [3] contains many references to
work involving the Green's function type splines mertioned above.) However,
although some of our results may have analogues in the works cited above, we
felt that this development had enough novelty to warrant completion.

This paper is organized as follows. In Section 2 we give the definitions and
derive the basic properties of k-harmonic splines. The cardinal interpolation
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problem for k-harmonic splines is taken up in Section 3 where it is shown that
under certain circumstances this problem has a unique solution. The relation-
ship of these splines to the multivariate analogue of the Whittaker cardinal series
is indicated at the end of that section; this was prompted by a question raised
by C. de Boor.

We use mathematical notation which is standard when dealing with multi-
variate functions. For example, the symbols p and v' usually will denote multi-
indexes, z = .... z, etc.; S(R") and S'(R") denote the Schwartz space of
rapidly decreasing functions and its dual, the space of tempered distributions.
The introductory chapter of [11] contains a concise summary of this so-called
multi-index notation and basic facts on distributions and Fourier transforms;
other references which contain basic material used here concerning distributions,
Fourier transforms, and several complex variables are [2], [5], and [16]. For the
Fourier transform we use a standard normalization which is slightly different
from that used in [11], namely,

= (2,r)-" 1 2 I C-'((,c)0(x)dx

when -0 is in S(R"); here the integral is taken over all of R' and 4 is the Fourier
transform of 0. In what follows, integrals, as in the above case, are taken over
R" unless specifically denoted otherwise.

2 Definitions and basic properties.

Recall that a function or distribution u is said to be k-harmonic, k a positive
integer, if
(3) &u = 0

on R n . Here A is the usual Laplace operator defined by

892UAu =/_ z
Jr 1  3

and, if k is greater than one, Ah denotes its k-th iterate, A*u = A(Ak'u). Of
course A' = A. A pollharmosic function is one which is k-harmonic for some
positive integer k; for a treatise on the subject see [1].

The class H11(R") is the collection of all k-harmonic tempered distributions.
In what follows the classes Hk(R") play a role similar to that played by the
polynomials, 112k-1(R), in univariate spline theory. Indeed we have the follow-
ing.

Proposition 1 The class H&(R") is a ssbspace of polynomials which contains

3
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Proof If u satisfies (3) then its Fourier transform, i, satisfies 1j2k8( ) = 0
for all t in R1. It follows that ft is a distribution supported at the origin and thus
must be a finite linear combination of the Dirac distribution and its derivatives.
Hence u must be a polynomial. That Hk(R") contains f2kl-(R ' ) follows from
the fact that Ak is a homogeneous differential operator of order 2k. U

For k a positive integer satisfying 2k > n + 1, we define SH 5 (R n ) to be the
subspace of S'(R") whose elements f enjoy the following properties:

(4) (i) f is in C 26"--'(Rn) and
(ii) Akf = 0 on R" \ Z" .

Here Z denotes the set of integers and Z" denotes the integer lattice in R".
Elements of Z" are denoted by boldface symbols such as j and m.

A k-harmonic cardinal spline is an element of SH5 (R"). We say that a
function or distribution is a polylarmonic cardinal spline if it is in one of the
classes SH 1 (R").

The reason for the condition 2k > n + 1 can be explained as follows. If
2k < n + 1 any distribution which is locally in LO* and satisfies condition (4ii)
must be k-harmonic on R". Thus if SHk(R") is to consist of functions which
satisfy (4ii) and for which pointwise evaluation on Zn makes sense then the last
observation implies that SHk(R") must in fact be the space H&(Rn). Like the
space of polynomials in the case n = 1, the class Hk(Rn) can only interpolate
very restricted data on Z n . Since we wish the space SHk(R") to be rich enough
to interpolate a wide clas of data on Z n , we assume 2k > n + 1.

In what follows we always assume that 2k > n + 1. For the sake of clarity
however, we will remind the reader of this from time to time.

Fundamental solutions of (3) play an important role in the description of
SHa(R"). For future reference we define Ek to be the fundamental solution of
(3) given by

( c(n, k)IX 12 ,1- "  if n is odd
(5) E1(2) 1 c(n, k)ZJ21-"loglz1 if n is even

where c(n, k) is a constant which depends only on n and k and is chosen so that

AbE 5 (z) = 6(z). Here 6(z) denotes the unit Dirac distribution at the origin.

The Fourier transform of Es is

(6) Qt~) = (2,r)- /2(_1t4I 2P'.

The following propositions give some of the basic properties of the spaces
SHf(R).

Proposition 2 lff is a tempered distribution then the following conditions are
equivalent:
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(i)! f s in SHk(R").

(ii) f satisfies
(7) Ah~)=~ ajb(z - j)

where the a's are constants and the sum is taken over allj in Zn.

Proof Suppose f is in SH1 (Rn). To see that f satisfies (7) observe that in

a sufficiently small neighborhood N of any point j we have

ak f(z) b. DZb6(z -j)

where the sum is taken over some finite set of multi-indicies v. Representation
(7) will follow if we can show that b,, = 0 for v' 6 0. To see this let 4, be
any infinitely differentiable function with support in N such that O.(z) = 1 in a
neighborhood of j. Then, since f is in C, R, \ Zn ,

Ah(Of) bvDv(z-j) + 'k

II,

where 0 is an infinitely differentiable function with support in N. Now, if E is
any fundamental solution of (3) then

Of= E * (Ak4,f) = bVD'E(z -j) + E *4
A,

where E * ,is infinitely differentiable on R n . The fact that b., = 0 for v' 3 0
follows from the last equation, the fact that Of is in Clk-nl(Rn), and the
behavior of D' E(z - j) in a neighborhood of j.

To see that (7) implies that f is in C 2k-n-l(Rn) observe that in any suffi-
ciently small neighborhood N of j f(z) - aj E(z - j) is equal to a k-harmonic

function and therefore f(x) - aj E(z - j) is in C N). Note that E(z - j) is
in C 2k-n-l(Rn) and hence it follows that f is in CU-f-l(N). The desired
conclusion is now an easy consequence of this fact. a

In what follows we say that a sequence a- , j in Zn, is of polynomial growth if

there are constants c and p such that jajj 5 c( 1 + Lii)' for all j. Similarly a locally
bounded function!f is said to be of polynomial growth if if (z) 1 : c(1 + 1ziJ)P for

all z in R". The following observation is an easy consequence of the definitions.

Proposition 3 If f is in SHh(Rn) then the coefficients in representation (7)
are unique and are of polynomial growth. Furthermore, if fa and 12 are in
SH1t(R") and Akf1 = A'! 2 then I, - 12 is in H,(Rn).

in5



The proof of the following proposition is somewhat technical and perhaps
disruptive to the flow of main ideas of this section. We include it for complete-
ness.

Proposition 4 If f is in SH&(Rn) M/en f is of polynomial growlh.

Proof For 4' in S(R") let

11.= suplz'D"'O(x)I

where the suprernum is taken over all z in R". Since f is in S'(Rn) there are
constants M, N, and C, so that

(8) I(f, 0)I 1  I4'

where the sum is taken over all multi-indexes IA and L' such that 0 <_ IJAI : M
and 0 < Im <5 N. Since f is in SHk(Rn) there are constants MI and C2 such
that
(9) 1(LAkf, ')I 1 < C2 E l40I1"o
where the sum is taken over all multi-indexes I such that 0 < an pehM1 .

Observe that (f, ) = (fi, i) + ((hi A)t, ) and by induction

fn

(10) (f~')=(f'0)+E(_Akf j
j=1

where o is defined by the formula for its Fourier transform

(11) 4',(C) = (1 + ICI2k)-4,(C)

Formula (11) together with properties of the Fourier transform imply that

(12) Z"',(z) = Eup ., * 0D(z)

where ts e is defined by 0a() = z '.(S) and the g,, are bounded continuous
functions. Hence there is a constant C3 such that

(1) 0 1,,) !5 C3, I Iz'(1 .

Similar reasoning shows that if m satisfies 2k(m - 1) > [&,I then

xf'

where C4 is a constant independent of r.
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Formula (10) together with estimates (8), (9), (13), and (14) imply that

there are positive constants C and a, independent of 0, such that

(15) I(f,)I 5 CJ(1 + IzI*(z)tdz

for all 0 in S(R'). Estimate (15) together with Riesz representation imply the
desired result. 0

This last proposition, when combined with the fact that continuous functions
of polynomial growth are distributions in S'(R") shows that SHk(R n ) could
be defined, without any loss of generality, as the class of continuous functions
which satisfy (4) and are of polynomial growth.

In the case n = I SHk(R") is the subspace of Sn, m = 2k - 1, consisting
of functions of polynomial growth. The space Sm is the space of piecewise
polynomial functions defined by Schoenberg, see [15]. The reason we restrict our
attention to S'(Rn ) is because our development relies on the use of the Fourier
transform. Thus in spirit this development is similar to that in Schoenberg's

earlier work [14].
If a is a real parameter we define SHk(R n ) to be that subspace of SH&(R n )

consisting of functions f which satisfy If(z)I 1 c(I + Iz1)0 for some constant c.
As an immediate consequence of Proposition 4 we have the following.

Corollary 1 SHk(R") = USHk'(R") where the union is taken over all real a.

To complete our list of basic properties of SH& (R") we include the following.

Proposition 5 Given a sequence {aj}, j in Zn, which is of polynomial growth,

there is an f in SHk(R") such that

(16) Akf(Z) = E aj6 (c - j).

Proof Recall that Alu = v has a solution u in S'(R") whenever v is in
S'(R"); for example see [12]. The hypothesis implies that the right hand side
of (16) is a tempered distribution and thus there is a tempered distribution f
such that (16) holds. That f is in SHk(R") now follows from Proposition 2.E

Proposition 6 SHk(R") is a closed subspace of S'(R").

Proof The mapping f Akf is continuous as an operator from S'(R")
to S'(Rn), which means that the inverse image of a closed set is closed under
this mapping. Now, the set of those elements in S'(Rn ) consisting of Radon
measures supported on Z" is a closed subspace of S'(R"), and, since SH (R')

is the inverse image of this subspace under the mapping described above, the
desired result follows. U
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3 Cardinal spline interpolation

The problem of cardinal interpolation for k-harmonic splines is the following:

Given a sequence of real or complex numbers, v = {tvj}, j in Z",
find an element f in SHk(R n ) such that f(j) = vj for all j.

This, of course, is a simple generalization of the standard problem in the uni-
variate case, see [15, p. 33].

Since elements of SHL.(R n ) are of polynomial growth it is clear that in order
for this problem to have a solution a necessary requirement on the sequence
v is that it also be of polynomial growth. This requirement is also sufficient,
as we shall show. We begin by first considering the fundamental functions of
interpolation.

The function Lk is defined by the formula for its Fourier transform:

(17) L() (21) - 412 Iti-2k
_YIEZ- 1 - 27rjl-2k"

If k is an integer such that 2k > n+ I then Lk(C) is well defined as an absolutely
convergent integral. This function is the fundamental function of interpolation
for k-harmonic splines. The reason for this terminology is the fact that Lk(j) =
60j, where 6 is the Kronecker delta. This and other properties of Lk and some
of the consequences for the interpolation problem are stated in Propositions
7 and 8. Before turning to these propositions however, we need to consider
certain technical properties and lemmas concerning Lk and the related periodic
distribution, 4k, defined by

(18) 4k(t) = (-jI2)kik(t).

Given a subset A of the real line R and a positive number e, A is the subset
of the complex plane defined by

A,={r C : r EAand -c<!)r <c}

where Rr and r are the real and imaginary parts of r respectively. Similarly
= .A x ... x .A, is a subset of C". The symbol Q denotes the interval -ir <

p < r and Qn denotes the cube

Q" = (t = (tj,..., ) : -w < j _< r, n)=1 .
Lemma 1 The functions th and LI have eztensions which are analytic in a

tube R:, for some e > 0.

Proof For t and rq in R", let

C = ( ..... ,) = (x + i 1 ..... G + ifn) = + i,1

8



denote a point in complex n-space, C", and put
tf

m=1

Observe that

(19) (2r)nI2[k()]-I = {1 + [q(t)]kF(t)}[q(t)]-k

where
F(C)= q((- 21j) -k

jez-\{o}

Choose c small enough so that q(() 6 0 for all C in Rn \ Q,. Then it is readily
checked that F is analytic in Q". For C in Qn, [q( )]kF( ) >_ 0. Thus, by
reducing e if necessary, we may assume that I + [q(C)]k F(C) has no zeros in Q".
Now, from (19), it follows that 4k extends analytically to Qn, and hence, by
periodicity, it extends analytically to RI.

The analytic extension of Lk is given by 4k(()[q(()] - k. From (19) it is
evident that this extension is analytic in Q". Analyticity on the rest of R~n is
clear from the fact that q(() $ 0 there. U

Lemma 2 The Fourier transform of 4k is a sum of constant multiples of trans-

lates of the delta function. More precisely, 4 k = 4L and

(20) I(Z)= aj(z- j)

where the aj's depend on k and n. Furthermore, there are positive constants, C
and c, which are independent of j such that

(21) 1ajl < Cexp(-cUl)

for all j.

Proof The periodicity of 4k implies that 4k satisfies (20) with

(22) aj = (21r) - n/ 2 Q. edl4( )df.

Now, by virtue of analyticity of 4k, the set Q" in (22) can be replaced by
IC : RC E Qn and !( = -t) where -y = (.r. ..... "r.), -m are constants, Iml =
c/2, m = 1,... ,n, and the sign oftn is chosen so that (j, t) > 0 whenever j 4 0;
here c is the same as that in Lemma 1. Upon doing this, a routine estimate of
the resulting integral gives (21). U
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Proposition 7 Let Lk be defined by the formula for its Fourier transform (17),
where k is an integer which satisfies 2k > n + 1. Then Lk has the following
properties:

(i) Lk is a k-harmonic cardinal spline.

(ii) For all j in Z n

)1 if j=0(23 Lkj)= 0 if j AO

(iii) There are positive constants A and a, depending on n and k but independent

of z, such that

(24) ILk(x)[ < Aexp(-axl)

for all z in R n .

(iv) Lb has the following representations in terms of Ek:

(25) Lk(z)= ajEk(z -j) = DL * Ek(z)

where I& is the function whose Fourier transform is defined by (18) and the
aj's are the constants defined in Lemma 2. The series converges absolutely and
uniformly on all compact subsets of R n .

Proof (i) This follows from (20) and the fact that AkL, = k.
(ii) Observe that Ej Lk( - 2wj) = (2r)- /2', and write

Lk(j) = (21)-n / 2 J Lk( )e(J)dt = (21)-n / 2 F j L,( -

= (2r)-n/2 I E L,(,-2,rm)eU.'d,0 = ()/ e'0')df.
Mez* (2r)n Q .

The desired result is now an immediate consequence of the last formula.
(iii) The proof of this estimate is analogous to the proof of (21) in Lemma

2.
(iv) This is a transparent consequence of the definitions and Lemma 2. U

For later reference, we define Y*, c real, to be the collection of those se-
quences v = {vj}, j in Z", which satisfy

(26) IvjI S c(1 + LiI)"
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for some constant c. Note that these classes are analogous to the ones in [15, p.
34]; they will also be used here in a similar fashion.

Proposition 8 Suppose v = {vj}, j in Z", is a sequence of polynomial growth
and f. is the function defined by

(27) fv(z) = vjLk(x -j).
jEZ '

Then the following is true:

(i) The expansion (27) converges absolutely and uniformly in every compact

subset of Rn.

(ii) The function f. is a k-harmonic spline and f.(j) = vj for all j.

(iii) If v is in Y' then f, is in SHk*(Rn).

(iv) If vj = P(j) for all j, where P(z) is a k-harmonic polynomial then f.(z) =

P(z) for all z in Rn .  -V

Proof Items (i)-(iii) are immediate consequences of Proposition 7.
(iv) Suppose P is a k-harmonic polynomial and f is defined by

fix) = E P(j) Lk(z -j).

Recall that any locally integrable function g of polynomial growth is in S'(R");

furthermore for any 4, in S(R") we have

(g, ) Jg(z)4(z)dz and g * O(z) g(y)4(x - y)dy.

To prove (iv) of this proposition it suffices to show that

(28) (f,) = (P,40)

for all 4 in S(Rn).
To see (28) observe that

(29) (,4) = E P(j)L O * (j) = (2w)nl / E [P(iD)(Lk()

jEz- jez-

where the last equality follows by virtue of the Poisson summation formula. To
evaluate the expression on the extreme right in (29) set

Aj = [P(iD)(i&(4)'(M))]Cf2,j

=l



and observe that for each j in Z" Lk may be expressed as

(30) . + JE12o( ) ifj = 0
4 - 2,jJ2* j( ) otherwise

where the 'Pj's are smooth functions such that j(€) = i(4)$( ) is a test func-
tion in S(R") for each j. In view of (30) we may write

(31) (2r)"2Aj- fP(Z)[4(Z) + (.A)ko(z)]dz ifj =0

f P(z)(-A)k[e-'(Jdx)(x)ldx otherwise.

Now, integrating by parts and using the fact that AkP = 0 results in

(32) J P(z)(-A)k[eiU)4j(z)dz = J[(-A)kP(z)Ie-'U)O.(z)dz = 0

when j $ 0. Similar reasoning shows that

(33) (2,r)nl 2
Ao = J P(z)O(x)dz.

Formulas (29), (30), (31), (32) and (33) imply (28) which is the desired result.

It should now be clear why Lk is called the fundamental function of inter-
polation for k-harmonic splines. Note that items (ii) and (iv) of the previous
proposition may be restated as follows.

Corollary 2 If the data v is of polynomial growth then the cardinal interpola-

tion problem for k-harmonic splines has a solution which has a unique represen-
tation in terms of fundamental functions of interpolation. The solution is given

• by
t(34) f.(z) = vjL(x - j).

t: JEZ"

We now take up the question of uniqueness by first considering the following
technical lemma.

Lemma 3 Iff is in SHk(Rn) and f is Znperiodic then f is a constant.

Proof The hypothesis implies that

i(f) = E cj6 (f - 21rj) and Akf(z) = a E 6(z - j),

12



where both sums are taken over all j in Z'; a and the cj's are constants. These
formulas together with Poisson summation imply

(35) (-12,rjl 2)kcj = a

for all j in Z'. The equation corresponding to j = 0 in (35) implies that a is
0; the rest of the equations in system (35) imply that cj = 0 whenever j 4 0.
Thus f(z) = co, which is the desired result. U

Proposition 9 If f is in SHk(R") and f(j) = 0 for all j in Zn then f is
identically 0.

Proof Recall that
(36) Akf(z) = Cj 6(Z - j).

jEZ-

Now, if cj = 0 for all j, f must be a k-harmonic polynomial. This together with
the fact that f(j) = 0 for all j implies the desired result.

Thus to complete the proof it suffices to show that cj = 0 for all j.
To see this, write g(z)- _ cjLk(Z -j),

jEZ'

and observe that
(37) A*(9 - Ok *f) = 0

where 0& is the distribution defined by Lemma 2. From (37) it follows that
g - 4k * f is a k-harmonic polynomial P. Since Ik * f(j) = 0 for all j it follows
that g(j) = P(j) = cj.

Now, if P $ 0, there is a finite difference operator, T, such that

(38) TP(z) = E bjP(z - j) = B

jE7

where the sum is taken over a finite subset Y of Z" and B is a non-zero constant.
Write
(39) ATf(Z) =Akf(z) = TP(j)6(z - j) = B 6(z-j)

JEZ3 jEz-

and observe that (39) means that Tf(z -j) - Tf(z) is a k-harmonic polynomial
for each j. This, together with the fact that Tf(m - j) - Tf(m) = 0 for all
m and j implies that Tf is Zn periodic. Now, by virtue of Lemma 3 Tf is a
constant and hence
(40) AkTf = 0.
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Formulas (39) and (40) contradict the fact that B j 0 and thus imply the
desired result. U

An immediate consequence of Proposition 9 of course is the fact that any so-
lution for the problem of cardinal interpolation for k-harmonic splines is unique.
We summarize our results concerning the interpolation problem as follows:

Theorem 1 If v = {vj), j in Zn, is a sequence of polynomial growth then there
is a unique k-harmonic spline f such that f(j) = vj for all j. Furthermore, if v
is in Y* then f is in SH(Rn).

Note that the converse of the theorem above follows immediately from the def-
initions and results in Section 2.

Theorem 2 Every k-harmonic spline f has a unique representation in terms of
translates of Lk, namely

f(z) = fj)Lk( -j).
jIEZ'

We conclude this paper with a result that may justify the use of the adjective
'cardinal' when referring to these splines. For the univariate case see [15].

Proposition 10 For z = (z,... , X,)

(41) lim Lk(z) = sri
k-*o iI* lxi

uniformly in z on Rn.

Proof First observe that the formula for L, may be rewritten as

(42) ( 2-= 1+ I12 k } '

Now, for j i. 0 and 4 in the interior of Q', 1 - 2il > I11. Hence, for such 4, it
is clear from (42) that(43) lim ik(f) = (2' - / .

To see what happens for general t's write, by virtue of the periodicity of 4k,

(44) L&(f) = (-Il)-.k(4- 21j) W I_ L(f -  2 rj).

14



From (44) it is clear that for in the complement of Q"

(45) lim Lk(t) = 0.

Again using (44) together with routine estimates shows that, whenever 2k >
n+1, Lk is dominated by an integrable function, independent of k. This together
with (43), (45), and the dominated convergence theorem imply that (2wr)n/2Lk
converges to the characteristic (indicator) function of Qn in L'(R n ) and hence,
the desired result follows by taking Fourier transforms. U
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Solutions of Underdetermined Systems of
Linear Equations

W. R. Madych*

Abstract

We (i) outline a general framework for generating solutions to un-
derdetermined systems of equations, (ii) review properties of several
specific methods, including minimal norm and maximum entropy, (iii)
introduce specific alternate methods for generating non-negative solu-
tions, (iv) compare, via systematic numerical examples, the solutions
generated by these methods with those generated by the maximum
entropy and minimum norm methods, and (v) consider the nature of
the positivity constraint by studying a transparent example.

1 Introduction.

This study is an attempt to obtain some understanding of the nature of cer-
tain solutions of underdetermined systems of linear equations with a view
to their role in the analysis of various practical inverse problems, specifically
those associaced with image restoration and computed tomography. For ex-
ample, one of the questions we are interested in is the following: under what
conditions, if any, is the so-called maximum entropy solution better than
solutions obtained by other methods. To this end we introduce alternate
methods for generating non-negative solutions and discuss the results of sev-
eral systematic numerical experiments.

More specifically we (i) outline a general framework for generating solu-
tions to underdetermined systems of equations, (ii) review properties of sev-
eral specific methods, including minimal norm and maximum entropy, (iii)
introduce specific alternate methods for generating non-negative solutions,
(iv) compare, via systematic numerical examples, the solutions generated by
these methods with those generated by the maximum entropy and minimum
norm methods, and (v) consider the nature of the positivity constraint by
studying a transparent example.

*1980 Math. Subject Classification (1985 Revision). 62G05, 65D99. Partially sup-
ported by a grant from the Air Force Office of Scientific Research, AFOSR-86-0145
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In this paper the basic issue is the non-uniqueness of the solution. We
mention but do not specifically address the important issues of noise, ill-
conditionedness, and efficiency of the numerical algorithms used to imple-
ment the various methods under consideration.

1.1 The Basic Setup.

Consider the system of linear equations

(1) Z]Eaijxj=bi, i,...,m.

Here, we take the field of scalars to be real. Using standard matrix notation
(1) may be expressed as a collection of scalar products

(2) (ax) = b, , i = 1,...,m,

where a, = (ail,. ., ain)T, X = (XI,.. .,Xn)T and (ai, x) = aTx; or even more
compactly as
(3) Ax=b

where A = (a,3 ) is an m by n matrix and b = (bl,..., b,)y.

In what follows the matrix A and the data b are assumed to be known.
We are interested in the set of solutions to (3), namely the set

SA,b ={X : Ax = b}.

To avoid complications which are not germain to the questions under consid-
eration here, we always assume that m < n and that A is of full rank. Thus
SAb is not empty; indeed, it is an n - m dimensional affine manifold in the
real Euclidean space R".

1.2 Motivation.

In the applications we have in mind, namely image restoration, computed
tomography, and related inverse problems, A represents the mathematical
model or a discrete analogue of the data aquisition scheme and b is the
measured data.

In studying such models many considerations must often be taken into
account. For example, in certain models of seismic borehole tomography A
is rectangular but not of full rank, see [5]; in this case system (3) is both over
and underdetermined. Another complication arises in problems of practical
interest by virtue of the fact that there is always some degree of uncertainty in
taking physical measurements. Thus in many instances (3) is often replaced
with
(4) Ax + e = b
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where c is a random vector which represents noise and has certain statistical
properties, see [1], [8], [9], [11]. In view of the fact that there are standard
techniques to handle the above complications we feel that taking into account
such considerations here will unnecessarily complicate the discussion and
cloud the main issue which is the lack of uniqueness.

Returning to the problem modeled by (3), it is clear that the desired
quantity is a solution which, unfortunately, is not uniquely determined by
the measured data. In fact, the set of feasible solutions SA,b is very large
indeed.

Ideally, if one could constrain the feasible set of solutions appropriately,
(3) should contain enough information to uniquely determine the x which
gave rise to the data. Of course, the best that one can usually expect is to
obtain a reasonable estimator.

We outline some general methods for constraining the feasible set of so-
lutions in section two. In the third section we consider some familiar exam-
ples, specifically the minimum norm and maximum entropy methods, and
introduce some new methods. Finally, in section four we consider the conse-
quences of certain constraints, particularly the constraint of componentwise
positivity; here we also indicate the results of several numerical experiments.

2 Restricting the Feasible Set.

There are many procedures for restricting the solutions of (3). In this paper
we consider two general and often related methodologies. These are described
below together with a familiar example. Details of how they are related are
contained in subsection 2.3.

2.1 Parametrization.

One method is to assume that the solution of (3) is of a certain form. Namely

(5) x = F(C)

where = ... ,4) is contained in a subset of Rk, call it 'P, and F is a
mapping of P into a subset M of R".Typically the set P is an open subset
of Rk and the mapping F is one to one and continuously differentiable; in
this case M may be viewed as a k dimensional submanifold of R". We will
always assume that this is the case and, for readily transparent reasons, see
(6) below, take k = m. Essentially F is a parametrization of the manifold
M.

The problem now reduces to finding values of the acceptable parameter
such that

(6) AF(t) = b.
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If is any solution of(6) then clearly x = F( ) is in the intersection of M and
SA,b. The main difficulty with this approach in the general case is assuring
that the form (5) is such that (6) has a unique solution for every b which
may arise in a given application. Furthermore, except for certain examples,
it is difficult to determine M, let alone the intersection of SA,h with M.

One classical example where (6) has a unique solution for every b is the
case when P is R1,

(7) x = F()= al + . . = A T ,

and M is the linear subspace generated by a,,..., a,. In this case the unique
solution of (6) is given by
(8) = (AAT)- 1 b

and the corresponding solution x of (3) is given by

(9) x = AT(AAT)-lb.

(We remind the reader that A is assumed to have rank rn which implies that
AAT is invertible.) We will return to this important example later.

2.2 Optimization.

The other general approach is to find the minimum (or maximum) of a scalar
valued function f(x) defined on a subset KI of Rn subject to the constraints
imposed by (2). In other words, find x which satisfies

(10) f(x) = min{f(y) : y E K n SA,b}.

Of course f should be chosen so that the set IC n SA,b is not empty and f has a
unique minimum on this set. Fortunately by choosing f with certain readily
verifiable properties, for instance, convexity, it is not difficult to guarantee
that the desired conditions are satisfied.

For example if f is a positive definite quadratic form on K = Rn then it
is a classical fact that (10) has a unique solution, see [10]. In the special case

f(W = (Z'x)

the solution is known as the minimum norm solution of (3) and is given by
(9).

2.3 A connection.

As mentioned earlier, often the methods of parametrization and optimization
are related. To see this, assume that f(x) is continuously differentiable and
formally apply the method of Lagrange multipliers to solve problem (10). In
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particular, set T = (ti,., r)r where the ti are the 'Lagrange multipliers'
and write

(11) h(C, x) = f(x) - Z i((ai, x) - bi).
j=1

Taking the gradient of h and setting the result to 0 gives

(ai,)=bi, i=1,...,m,

and
Of W)Ofjm , aij = 0O, j=1.,n.

2x i=i

The first set of equations is just (2). The last set of equations can be written
more compactly and transparently as

(12) Vf(x) = AT

where Vf denotes the gradient of f. If Vf is invertible the optimal solution
may be expressed as
(13) x =G(AT )

where G is the inverse of Vf. Vinally, equations (2) and (13) imply that
under appropriate conditions the solution to problem (10) is given by x of
the form (13) where is a solution of

(14) AG(A T ) = b.

The relationship mentioned above should now be clear. Roughly speak-
ing, if F() = G(A T), where G is the inverse of Vf then the two methods
should give rise to the same solution. This observation is useful when trying
to determine whether (5) has a unique solution and other questions related
to F.

In the case where f is of the form
!n

(15) f( ) - fh(xi)

equation (13) is particularly simple. Namely, it can be expressed as

(16) Xj= g((AT)j) , j n,...

where (ATe)j denotes the j-th component of AT and gj is the (univariate)
derivative of fi. Essentially all the examples below are of this form.



3 Examples.

3.1 Minimum norm and generalizations.

As indicated earlier the minimum norm solution of (3) is the solution to
problem (10) in the case
(17) f(x) = (x,x)

Perhaps a more accurate description would be the minimum quadratic norm
solution.

Standard variants of (17) are more general quadratics which include f's
of the form

f(x) = q(C(x - y))
where q(x) = (x, x), C is an n x n matrix, and y is a constant vector. The
parameters in C and y are usually chosen to influence the behavior of the
solution. Properties of such solutions are well known and well documented,
for example see [2], [3], [10], and the references cited there.

Perhaps the most important feature of this method is the fact that the
relationship between the data and the resulting estimator is linear. Besides
being a convenient theoretical tool, this property allows for efficient compu-
tational algorithms in many applications.

3.2 Maximum entropy.

The maximum entropy solution of (1) is an estimator whose components are
of the form

(18) xj = p.exp ( iaij ,j =1,...,n,

where p = (P,... ,p,)T is a constant and the Ci's are parameters chosen so
that x = (z, ... , X) T satisfies (1). Using the notation and terminology of
subsection 2.1 this form can be expressed more compactly as

(19) x = F(C) = Pexp(ATC),

where P is the constant diagonal matrix with diagonal p and the exponential
is interpreted componentwise, namely, if y = (Yi,. .,Y,,)T then exp(y) =
(exp(Y),..., exp(y,))T.

Observe that in this case the manifold M is contained in the positive
cone

R+ = {x : > o, 1,...,n).
Thus it should be clear that any estimator of this form will have non-negative
components.
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The parameter p is chosen to influence the behavior of the solution. In
the discussion below, unless indicated otherwise, we always assume the com-
ponents of p to be one.

Observe that the manifold M can be described so that in low dimensional
examples it is relatively easy to visualize. For example, in the case m = 2,
n = 3, if the last column of A is a linear combination of the first and second
with coefficients a, and U 2 respectively, then M may be described by

M = {X : X1 > 0, X2 > 0, X3 = X11X
2  }.

In the general case, if A is such that the first m columns are linearly in-
dependent, and the components of x can always be permuted so that the
resulting system of equations has this property, then M is the intersection
of the manifolds Mi, i = 1,... ,n - m, where

Mi = {X : X, > 0, X.. , > 0 , z,+j = z 'il . .. ' }.r

and the aii's are appropriate constants.
It is not difficult to see that the resulting estimator may also be viewed

as the solution of the minimization problem (10) with

(20) f(X) = E, xj log ( ,i
j=1 ep/

where log is the natural logarithm with base e and the constants pj are those
in (18). As suggested in subsection 2.3, an immediate consequence of this
formulation is the fact that if the solution hyperplane SAb intersects the
positive cone Rn then SA,b intersects the manifold parametrized by (19) at
exactly one point. In other words, if R. n SA,b is not empty then (3) has a
unique solution of the form (19).

Note that the the particular normalization of f in (20) results in x = p
as the optimal solution in the case of no contraints.

It should be mentioned that the maximum entropy solution is often
viewed as ,hat estimator which maximizes the negative of an expression
similar to (20). Thus the term maximum. The rationale behind the term
entropy is discussed in [4] and [6].

In view of the fact that much work has centered around this method
suprisingly little is known concerning the theoretical properties of the result-
ing estimators beyond the immediate consequences of the definitions.

One interesting fact concerning such solutions to a very special class of
linear systems has been given in [4] and [7]. These systems can be described
as follows: Suppose n = 1k and write the variable x = (xI, ... n,,) in a
rectangular array as shown.

(21)
Xlk.k+1 ...
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The system of equations then is simply the collection of row sums and column
sums of (21), namely,

Ek

(22) E =1 x(i-)k+j = C3  , J = 1,.. ., ,
Et=IX(i-1)k+j=Cj , j= - 1....,Ik,

where each row and column sum is positive and

r+' + r

Cl+'"+Ck=l-

For this system the maximum entropy solution is given by

(23) X(i-I)k+j = ricj.

In other words, the value of each component is the product of the row and
column sums which contain it.

The setup involving (21), (22), and (23) has the following probabilistic
interpretation. If the xj's represent the probabilities of certain basic events
wj, j = 1,.. ., n, then the sums in (22) represent the probabilities of the
unions,

=Uj=1Lo(i_)k+j , = 1,..., 1 and yj = U =lw(-.)k+j, j = 1, ..., k.

Formula (23) expresses the fact that pi and -yj are mutually independent
events in the probabilistic sense. This interpretation is valid only for systems
of the type described by (22); presently there are no analogous results for
more general systems.

3.3 Methods for generating bounded solutions.

In this subsection we introduce two alternate methods for generating so-
lutions which are bounded componentwise based on the generalities in the
second section.

Observe that it suffices to restrict our attention to those methods which
generate estimators which are in the positive cone R' since the change of
variables x --+ x - y will easily transform such a method to one which gen-
erates estimators which are bounded componentwise from below by y. A
similar remark holds concerning boundedness from above.

If = (=t,.., . m)T, _0 < i < oo, i = 1,..., m, consider the parametriza-
tion given by

(24) j = {(A )+ (AT)+4} , j= l,...,n,

8
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where (AT )j denotes the j-th component of ATE. This parametrization can
be expressed more compactly by the formula

(25) x = -(AT ) ,

where if y = (Y ,y..., Y)T then the j-th component of 4 is given by

Observe that if Mo denotes the manifold parametrized by (24) then M
is contained in the positive cone R.. Thus any solution of (3) which enjoys
the representation (24) must have non-negative components.

Proposition 1 If the intersection of SA,b and Rn is not empty then

(26) A-(A T ) = b

has a unique solution . In other words, MD n SA.b contains exactly one
element ! = (AT

Proof Consider the scalar function f defined on Rn by the formula

S(27) f(X) = E(2 - log X

It should be clear from the definition of f that there is a unique optimal i
which minimizes

{f(x) : x E SA, b l R}

in R .. Using the chain of reasoning outlined in subsection 2.3 it is apparent
that such an i satisfies

Vf(i) =A T

for a unique . Since 40 is the inverse of Vf we may write

and the desired result follows. U

For another example consider the relation

1
(28) s = t- 1

for positive numbers t. Since the right hand side of (28) is an increasing
function of t it is evident that (28) defines a function 0(s) mapping 0 <
s < oo onto -o¢ < t < oo. Note that 0(s) is a root of the polynomial

9
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t- St - . Now, using roughly the same notation as in (25), we define

another parametrization by the formula

(29) x = T(AT )

where the j-th component of IF is given by

Ti(y) = 0(yj) , j = I,-., n,

and 0 is the function defined earlier in this paragraph.
It is not difficult to see that everything that was said concerning $ also

holds for T. Indeed, we may state the following.

Proposition 2 Proposition 1 remains true if - is replaced by T.

Proof Recall the proof of Proposition 1. If we simply replace (27) by

(30) f(x) = .

the rest of the proof of this proposition is the same as that of Proposition 1.

A direct consequence of the above propositions are two methods for gener-
ating estimators for (3). For future reference we will refer to them as method
one and method two.

4 Numerical experiments and comments.

Recall that the estimators generated by the method of minimum norm are lin-
ear functions of the data. Furthermore there are a host of efficient algorithms
for computing them, see [2] and [10]. On the other hand, the estimators gen-
erated by the other methods mentioned above depend non-linearly on the
data and, as is readily evident, are considerably more difficult to compute.
Thus understanding the nature of these estimators and their relative merits
is of some practical significance.

4.1 Description of numerical experiments.

To obtain a sense of the nature of the estimators generated by the methods
outlined in section 3 we performed numerical experiments on relatively small
linear systems. The systems considered were of the form

(31)1(31)E xj+j "= b; , i = 1, ... , m,

j=O
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where k < n, m = n - k + 1, and n is the number of variables xj. System
(31) is a typical example of a one dimensional blurring model. The sizes
considered for our experiments ranged from m = 15, n = 20 to m = 80,
n = 100 with the ratio rn/n varying between 0.5 and 0.9. The experiments
were performed as follows:

A non-negative pseudo-random vector x = (xi,... Ix,)T was generated
via a canned subroutine and the data b = Ax was computed. Then each of
the methods outlined in section 3 was used to generate an estimator. We
refer to these method as minimum norm, maximum entropy, method one, and
method two or, more briefy, MN, ME, M1, and M2 respectively. Formula
(9) was used to compute the MN estimator. The other estimators were
computed by using Newton's method to solve (6) for and then using (5)
to evaluate the corresponding estimator i. In the case of maximum entropy
the values pi = 1, j = 1,...,n, were used. The resulting estimators were
plotted together with the true phantom x. In each case the error

was computed.
The results of these experiments can be loosely described as follows:
When the lower bound, zero in this case, was not a tight one for the phan-

tom then all the methods generated estimates which were roughly equivalent.
Namely, they differed from one another but the differences were judged not
significant. The computed error varied but was roughly the same order of
magnitude for all the methods. For example, see Figure 1; here m = 19,
n = 24 and the components of the phantom x are uniformly distributed
between 0 and 1.

On the other hand, when the lower bound for the phantom was reasonably
tight then the methods which enforced the lower bound generated consider-
ably better estimators. Indeed, the computed errors for estimators generatediby ME, M1, and M2 were significantly smaller than the error for the estima-
tor generated by MN. The estimators generated by ME, M1, and M2 differed
but the difference was judged not significant; the same was true of the cor-
responding computed error. For example, see Figure 2; here again m = 19,
n = 24 but the components of the phantom x are distributed according to
the 1/4-th power of the uniform distribution between 0 and 1.

Similar experiments were performed on systemq of the form
n 27rij
EX, Cos-, =0,...,k,J=--- n

n

E xisin- i k,
n
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where m = 2k + 1 and m significantly less than n. Here the results were
roughly the same as those reported above, although in the cases when the
lower bound was tight on the phantom the differences seemed less dramatic.

4.2 Comments.

To obtain some perspective on the observations recorded in the previous
subsection consider the system given by

(32) x1 +x 2 = c and X2 +z 3 =1

where e is a small positive number. In this case SA,b is simply the line in R3

parametrized by

x = (C - t,t,1 - t) , -00 < t < 00.

Suppose that, in addition to (32) we know that the phantom which gave rise
to the data had non-negative components. Namely,

(33) Xi_ 0, ,X2 0, x3 !0.

It is then clear that with this additional information the feasible set of so-
lutions is that part of SA,b contained in a ball of radius v/3e/2 centered at
(e/2, c/2, 1 - (E/2)). Thus any non-negative solution of (32) will be within
i& of the desired phantom. Indeed, if e = 0, then (32) together with (33)

imply a unique solution.
The principle illustrated by the above simple example is no doubt valid

for much larger and more complicated systems of equations. The extent to
which this principle is valid depends on the matrix A and the phantom x and
should be possible to characterize quantitatively in terms of these parameters.
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Multivariate Interpolation and

Conditionally Positive Definite Functions II

W. R. MADYCH* AND S. A. NELSONt

Abstract. We continue an earlier study of certain spaces that provide a variational framework
for multivariate interpolation. Using the Fourier transform to analyze these spaces, we obtain
error estimates of arbitrarily high order for a class of interpolation methods that includes
multiquadrics.

1. Introduction. This paper continues a study, [11], of certain subspaces Ch of C(R"),
the continuous complex valued functions on n-space R'. The spaces Ch provide a vari-
ational framework for the following interpolation problem: given numerical values at a
scattered set of points in R', make a good choice of a function f in C(R n ) that takes on
those values.

For the reader's convenience we review some basic features of the development in [11].
The starting point is the selection of an integer m > 0 and a continuous function h on R'
that is conditionally positive definite of order m. For example: m = 1, h(x) = - v/1 +j (2.
Using h, a space Ch with a semi-inner prtduct ( , )h is constructed. Ch is a subspace of
C(R"), and the null space of ( , )h is Pmo-,, the polynomials on R' of degree m - 1 or
less. A key property of Ch is this: if xl,... ,XN are distinct points in R' and vl,...,VN
-ire complex numbers, then among all functions f in Ch that satisfy the interpolation
conditions f(xi) = vi, the quadratic lifi12 = (f, f)h is minimized by a function of the form
f=s+pwherepis in Pn-I and

Ss()=Z cih(x - x)
a=l

with i-t= cix = 0 for all jiH < m. For the example mentioned, (1.1) is a multiquadric
interpolant.

Because the spaces Ch are translation invariant, the Fourier transform is a natural tool
for analyzing them; it plays a central role here. To clarify basic ideas and make an orderly
division of our results, we avoided Fourier techniques in [11]. We did, however, rely on
then in our earlier investigation (10], which was ii fact prompted by the Fourier methods
in Duchon (5]. Use of Fourier transforms allows us to give improved descriptions of the
Spaces Ch (see Section 3) and allows us to single out certain cases where error estimates of
orClcr e > m are possible (see Section 4). These estimates apply to the multiquadric case
as well as to related examples given in Section 5; for each example given there, the integer
C can be arbitrarily large.

*DepaIrent or Mathematics, University of Connecticut, Storrs, CT 06268. Both authors were partially

supported by a grant from the Air Force Office of Scientific Research, AFOSR-86-0145.
tDepartment of Mathematics, Iowa State University, Ames, IA 50011.



2. Preliminaries. In this section we recall some notation and results involving Fourier
transforms and conditionally positive definite functions.

Let D(R n ) denote the space of complex valued functions on R' that are compactly
supported and infinitely differentiable. The Fourier transform of a function V in E) is

(2.1) e(zcp(x)dx.

In order to make use of theorems from Gelfand & Vilenkin [7] we adopt their definition of
m-th order conditional positive definiteness. (Equivalence with the definition used in [11]
can be seen from Proposition 2.4 and Theorem 6.1 below.) Thus for a continuous function
1i we assume

(2.2) J h(x)V * (x)dx > 0

holds whenever 'p = p(D)O with p in ) and p(D) a linear homogeneous constant coefficient
differential operator of order m. Here (x) ='p(-x) and * denotes the convolution product

I * 'P2 (t) =JPl(X)' 2 (t - x)dx.

Note that (2.2) can be rewritten as

(2.3) ff h(x - y)_ (x)V(y)dxdy2> 0.

The following result can be found in Chapter II, Section 4.4 of [7]; we incorporate a
remark at the end of that section concerning the case where h is continuous.

Theorem 2.1. Let h be continuous and conditionally positive definite of order m. Then
it is possible to choose a positive Bore] measure M on R' - {0}, constants a.r, [I-f < 2m
and a function X in V such that: 1 - ( ) has a zero of order 2m + 1 at 0 = ; both of the
integrals f I 12 mdp(), f dy(C) are finite; for all 0 E D),

0<1(1<1 W >1

(2.4) = Dh(x)b(xLdx=dp( )+ D-(0).
1-yjl<2m Y1"-l<52m Y

This uniquely determines the measure M and the constants ay for 1y = 2m. In addition,
for every choice of complex numbers cG, Ii = m,

(2.5) a0 +#c0 O> 0.

The choice of X affects the value of the coefficients a.y for 1it < 2m. Note that the value
of the right side of (2.4) does not change if, for suitable (p, £ is replaced by + 'P and the
,-,, for 17[ < 2m, are replaced by ay + fp()C'dp( ).
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As can be seen from

(2.6) (-i)"I xNv(x)dx =

changing a coefficient a., on the right hand side of (2.4) corresponds to changing h(x) on
the left side by adding a constant multiple of x-'.

For m = 0, (2.4) reduces to f he = f O-dA where A is the Borel measure on R' given by

A(E) = p (E - {0}) + ao6(E).

Here 6 is the measure corresponding to a unit mass at the origin; 6(E) = 1 if 0 E E and
6(E) = 0 otherwise. Recall that Borel measures that are finite on compact sets are called
Radon measures. We make the usual identification of a Radon measure on an open set
fQ C R' with the corresponding distribution in V'(Q) and write (A, 0) = f kdA. Also, if
f E L'oc(R") we identify it with the distribution in VY given by (f,k1 = f O(x)f(x)dx.
Thus, for m = 0, (2.4) says (h, W) = (A, .

For an illustration of the theorem when m 6 0, take n = 2, m = 1, h(x) = -Vf1 + jx2 .

Then dy( ) = w( )d with
S(1 + 11) e-It '

and a., = 0 for 1-yi = 2. If X is even, then the coefficients a-, for i-tj = 1 are also 0.
The remaining coefficient is a0 = - (1 + f (1 - j( )] w( )d ). Details for this and related
examples are given in Section 5.

We use TkW to denote the k-th order Taylor polynomial for V about 0:

(2.7) T () = D*,p(0) -a!'
lI,<k

The integral on the right side of (2.4) can then be written as f - -T2 '-1 d.
The Schwartz space of rapidly decreasing C' functions and its dual, the space of tem-

)cred distributions, are denoted by the usual letters S and S'.

Proposition 2.2. Let k be a positive integer and let a be a Radon measure on R"- {0}
such that f 1I1(1 + lIkl)-'dlaI( ) < oo. Let s be a continuous function such that I(kS( )
is bounded on R" and 1 - s( ) = 0 (I 1k ) at = 0. Let

k-i (i(

(2.8) u(X) =( J r!~~ s~ o)
r=O

Then it E C(R"), u(x) = o(IXIk) as fxj -I o and for all V in S

(2.9) Jtu(x)n(x)dx I- tsTw'i •a.
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PROOF: Let E(t) e- it  k-( "t)r/rl and note that u uo where

U()= ( - -(.)) -irz,l) + s(C)E ((x, C)) dv(C).

141>a

From IE(t)l t I't we have Is(C)E((x, ))I lxijklIkls( )l. Our assumptions on a and s
ensure that I - s( ) and IC]kIs(C) belong to Ll(o). Continuity of u can be established
using dominated convergence.

To prove u(x) = a (jxik) note that luo(x) - u.(x)l < (cl(a) + c2(a)lxIk) where cl(a) and
c2(a) are the results of integrating 11 - s( )j and I Ikls(C) over 0 < Ifl S a with respect
to Ial. Given c > 0, choose a > 0 so that cl(a) < e and c2(a) < -. From IE(t)l < 21tl 1k-

and a > 0 we have u(x)- - 0 (IXlk- l) as IxI -- oo. Thus we may choose R > 1 such that
lua(X)l _ 61xjk for all IlxI > R. Then for IlxI > R,

IU(X)l < IUa(X)l + Iuo(X) - u.(X)I < EIXlI + 6 + EIXI k.

It follows that u(x) = o(Ixlk).
To establish (2.9), apply Fubini's theorem and use

J (-i(x ,)CZ (x)d= D !(O).

r!

This can be verified by using (yl +"" + yn)r/r! = E ye/a! and (2.6). 1
lal=r

If u is defined by (2.8) with a = p, k = 2m and s = ', then from (2.4), (2.9) and (2.6)
we have (h - u,, 0) = (q, 4) for all 0 in D. Here q(x) = a.(-ix)'/'y.

Corollary 2.3. Suppose h is continuous and positive definite of order m. If m > 0 then
there are unique constants a.,, 171 = 2m such that h(x)- E .=2m a(-ix)-/1-! = o (IX12m),
as Ixi --+ 0o. These constants are the same as those appearing in (2.4).

For ease in dealing with (2.5, we develop some related notation. Let Vn be the space
of vectors v = (v,,)I,I=m and let A be the operator on Vm defined by Av = w where

,= A,,/v6 and Ac,# = at+#/(a!,3!). Because of (2.5) A must be real symmetric.

Thus Av = 0 iff vTAv- = 0. Equivalently, the null space, NA, of A is the null space of the
semi-inner product (v, W)A = vT4W-. Let HA = Vm/NA be the Hilbert space obtained by
identifying v and w whenever liv - WiIA = 0. The elements of HA are the cosets v + NA
and as w varies over such a coset, Aw remains fixed.

By applying Theorem 2.1 we can recover (2.2) for a more convenient set of functions .
Let

(2.10) Dm={E D:Jxa(x)dx=O forallal<m}.
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Clearly, E ={S ,ED: 4() O(l Im) at =0}. If 4= ,then b=I41I so

Hence, for 4 = * • 3 with (o E D m,

(2.11) - 0 a,,+, D-(O) D - = r(

IoIym i2m a! 0

where -(")(0) is the vector v in Vr given by v,, = D';p(O). From (2.4) we see that if

E V.r" then

(2.12) fh(x)V * ;2(x)dx A- ~~~u+I~l)0I~

and (2.2) holds. Since Dr" includes the functions p for which (2.2) was assumed, we con-
clude that requiring (2.2) for all p E Drm is an equivalent definition of h being conditionally
positive definite of order m.

Since D,,+, C Drm, the latter definition makes it clear that h will be conditionally
positive definite of order m + 1 if it is conditionally positive definite of order m. If m is
replaced by m + 1 in Theorem 2.1, with h held fixed, the measure p will remain the same,
the coefficients ay, I-f) = 2(m + 1) will be 0 and the lower order coefficients will change to
reflect changes in k' and additional terms in the Taylor polynomial.

In order to apply results from [11] we verify that h is in the space Qr"(R") defined there.

Proposition 2.4. Let h be continuous and assume (2.2) holds for all (p E Din. If
x1,.. XN are distinct points in R" and c,. . CN are constants that satsfy Ei= cix? = 0
for all jal < m, then

N

(2.13) cih(x, - xj) > 0.
i,j=*

PROOF: Choose g in P with f g(x)dx = 1 and g(x) = 0 for all jlx 1. For e > 0,
let g, = -"g(xlc) and take Ve(x) = , cg (x - x&). Then e( ) = r( ) ( ) with
r(E) = C--§.= Cke-t(k,e)" From D r() = ck(_ixk.)%,e-qz,) we find r( ) = 0 (lj" m )
at ( = 0. Thus W, E D, and

0 < J h(x)p. * ,(x)dx = Jh(t - y)'p,(t)'p6 (y)dtdy.

Letting c -- 0 we obtain (2.13). 1

The following observations will be used in the next section. Let D, { : E 6 D. }.
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Proposition 2.5. Let m > 0 and let 14 be a positive Borel measure on R - {0} that
satisfies f(Il Iy/(1 + 1 lm)) 2dy( ) < oo. If 2k > m then E)k is a dense subset of L2 (,u).

PROOF: Let g E L2(IA) and e > 0. Choose gl E D(R" _, {0}) so that Jig - g11IL2(,.) < E.

Then f( ) = l-2 kg 1 (C) is in V. Since V is dense in S we can find i E V so that for all
in R-, If( )- b( )J - e/(1 + 1I121). Multiplying by 1 12k gives

!g~t)- ~ 2kI - 162
1 + I1l2k

Let - (-A)k0i. Then E V, () = I I2k,( ) and
/fg- rd <j2(1l 2 k 2

_ 1±12k2 dp(C).

Thus 11g - PIIL2(,) can be made as small as desired with (P E V2k. I
Proposition 2.6. If T E V satisfies T(V) = 0 for all W in , then T belongs to P,,-,.

PROOF: Define T, E V by Ta2(p) = f xc(x)dx and note that f{T;1 (0) : jal < m} =
DPn. By assumption, PDmn is contained in T'(0), the null space of T. It follows (see
Theorem 1.3 of [91) that there are constants c, such that T = E cUT.|

0 al<"m

3. Fourier Description of Ch. After analyzing the space Ch,m defined below, we will
see that it coincides with the space Ch studied in [11]. Among the results emerging from
this analysis is a Fourier transform description of Ch,,.

Definition. Let h be a continuous function on R" that is conditionally positive definite
of order m. We write f E Ch,m(R n ) if f E C(R a ) and there is a constant c(f) such that
for all p in Pm

(3.1) Jf f(x)(x)dx <c(f) { h(x - y)(x)X(y)ddy}

If f E Ch,."(Rn) we let c.(f) denote the smallest constant for which (3.1) is true.

It is easily checked that if f, and f2 are in Ch,,m then fi + f2 and afi, a E C, are also in
Ch,, with c.(fi + f2) < c.(fi) + c.(f 2 ) and c.(afi) = laIc.(fl). Iff E Pm-i and p E V m
then (f,V) = 0 so f E Ch,. and c.(f) = 0. Conversely, if c.(f) = 0 then f E P,._1
by Proposition 2.6. Thus c.(f) is a semi-norm with null space Pm._1 ; for m = 0, take
P_, = Mo}.

Using (2.12) we note that (3.1) is equivalent to

(3.2) I(f ") c(f) {1/2II L A

for all p in Vm. If v E Vm and

(3.3) q(x) = Z (Av),,(-ix)*

Io0=m
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I
then (q, ) = Z(Av).Da,@(O) = (V()(O),V)A so q E Ch,m with c.(q) = I13IIA. If

g E L 2 (p) and u is defined by (2.8) with a = gy, k = m and an appropriate choice of s
(take s = 0 for m = 0) then, for W E D,, (2.9) gives (u,V) = f 'gdp. It follows that
u E Ch,m with c,(u) = IgI112V(,).

Clearly Ch,,, includes all functions of the form f = u + q + p with u, q as above and
p E Pro-,. The next result, when combined with Proposition 2.6, shows that all functions
in Ch,, can be obtained in this way.

From the behavior of u(x) as jxj -- oo, described by Proposition 2.2, we see that if
rn > 0 and f = u +q +p *hen f(x) = o(Ix m ) is equivalent to q = 0 (or Av = 0). In any
case

(3.4) Ch,,.(R") C {f E C(R") f(x) = O(Ixl') as IxI - o}-

Proposition 3.1. Let m, h, p and a, be as in Theorem 2.1. Iff E Ch,m then there is a
function g E L 2 (p) and a vector v E Vm such that for all V in Vm

S(3.5) Wf,) / g dp + 1: (Av). Do,(O)"

I-I=m

This uniquely determines g and the coset v + NA.

PROOF : Define J : Vm -- H = L(/p) E HA by Jp = (,-(m)(0) + NA). From (3.2)
we see that I(f, o) < c.(f)IIJcIIH. From this we deduce that if J 1 = Jp 2 then (f,(I) =

(f, V2). It follows that there is a bounded linear functional L on the image JDM, such that
L(Jv) = (f, v) for all V in TDm. Since H is a Hilbert space, we can choose j E (U + NA) so
that for all V in Vm (f,V) = (4 1 (0 + NA))H. This gives (3.5).

For uniqueness, we show that JDn is dense in H. Let gi E L ' (p), w E Vm and r > 0 be
given. Take 2k > m and use Proposition 2.5 to choose (P E Dv. with 11i1 - iI LV( ,) < 71.
Note that Jp (j= G 0 since 2k > m. Put p( ) = E waa/a! and take X E D so

that 1 - ( ) - 0 ([n m + ) at = 0. Define L, E D by ¢b ( ) = p( )('(-). Then

J, = (w + NA). Choosing e close enough to 0, we have IIW,[I2(p) < 77. Then

11g1 + (w + NA) - J(I + 0)IH < 27. 1
If fE Ci,,m let Af = g e (v + NA) be the point in H = L'(p) eD HA determined by (3.5).

Clearly the resulting map A : Ch,m -+ H is linear. That A maps onto H is evident from the
remarks leading up to Proposition 3.1. From (3.2) and (3.5) we see that c.(f) = IIAfIH.
Note 1IAfII H = {(f, f)h} / ' = If 11h where (fi, f)h = (Afl, Af 2 )H is a semi-inner product
for Ch,m. There is a corresponding inner product on Ch,m/Pm.- which is then a Hilbert
space, isomorphic to H under the quotient map associated with A.

The following provides a converse to Proposition 3.1 and clarifies how the Fourier trans-
form relates f to g,v in (3.5).

Proposition 3.2. Let m, h, p and a., be as in Theorem 2.1. Fix g E L 2 (/), v E VmI and

f E V. The following are equivalent:

(a) (3.5) holds for all Wp in Vm,
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(b) f E S' and for every IaI = m, F'F - A, where F is the inverse Fourier transform
of f and A, is the Radon measure on R' given by

(3.6) AJ(E) = I 'g(t)dp( ) + a!(Av)Q6(E).
E- (0)

IWhen this is the case, f E Ch,m, Af = g e (v + NA) and (f, f)h = f IgI2 dy + vTAV- .

PROOF: Let q be as in (3.3) and let u be defined by (2.8) with a = gp, k = m and a choice
of s that satisfies the hypotheses of Proposition 2.2. If (a) holds then (f, V) = (u + q, ()
for all V E Din. By Proposition 2.6 f - (u + q) = p E Pm-. If F = f and t( ) =
then

( aF, ) = (F, t) = (f, ,) = (u, V,) + (q + p,

=J(& sTM- 1)gdp+ bLY'-4(O)

where the constants b, are determined by q + p(x) = b<(ix)a . Thus

(3.7) ( VaF, ) = J ( "( ) - 0) g( )dyu( ) + a!(Av).v(O)

which establishes (b). To see that (b) implies (a), let f, = u + q with u and q as above.
Then (3.7) holds for F where F1 = fl. Hence aF = A,. If (b) holds then 0F1 =- =OF
for all In = m. This implies F, - F = F, b<,Da6 which says fi - f E Pm-i. Therefore,

1c1<M

(a) and the other assertions about f follow from the corresponding facts about fi- I

For typical choices of h (e.g. those considered in Section 5) the measure Y is absolutely
continuous with respect to Lebesgue measure, dyu( ) = w( )d , and ay = 0 for all Iy, -- 2m.
In such cases the measures A in (3.6) are given by functions F" in L'o0(R'); dA.(C) =

F0,( )d , where Fa( ) = 'g( )w(j). From Df = ((-i)'F) = (-i)m Aa, we see that
(Daf) ^ = (-i)"n(21r)'Pa E L'o¢(R') where Fa( ) = F,,(- ). Let

1(3 .8 ) r (C ) = ( 2 ) ,, 1 . w _ )

with r( ) = cc when w(- ) = 0. If dp( ) = r( )d, then (Daf)"E L2 (p) and

II ( D c f ) IL ,(, ) = = Id /g( ).

Using (4.2) below with t =m,

(3.9) ! 11I(D'f)I112(P) JgI'djA = (f,f)h

Io=m J

Corollary 3.3. Let m,h, p, and a., be as in Theorem 2.1. Assume dp( ) = w( )d and
a. = 0 for all 1-y[ = 2m. Let p be the Bore] measure on R"'1 defined by dp( ) = r( )d with
r as in (3.8). Then f E Ch,m iff E S' and (D'f)-E L2 (p) for every [a = m. In that case
(f, f)h is given by (3.9).

The translation invariant nature of Ch,,, is evident in the following.
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Proposition 3.4. Let r be a compactly supported Radon measure on R'. If f is in
Ch,m then so is r * f. Furthermore, if A : Ch,, -- L2 (y) E HA is as defined above and
Af = g E (v + NA) then A(T * f) = tg E (t(O)v + NA) where t( ) = f ei')dr(x).

PROOF: If ik(x) = f (x + y)dr(y) then (r * f, W) = (f, V)) and

(3.10) i f() = JJe-('(x + y)dxdr(y)

SJ e-fi(-Y'f)p(z)dzdr(y) =

If Af = g E (v + NA), so that (3.5) holds, then for all W E :D,,

(r * f,W) = J ygdu + E D' t(O)(Av)a

=/tgd + >: t(O)D-;(O)(Av)0 .

I 1='

This gives (3.5), with f,g,v replaced by r * f, tg, t(0)v; the assertions made are now

apparent. I

In the next result, (3.11) is equivalent to A(v * h) = n E (w + NA) and (3.12) says
v(j) = (v * h,f)h. From this it is clear that Ch,m satisfies condition (c) in Theorem 1.1
of [11]. That conditions (a) and (b) are also satisfied can be seen from the discussion
above in which the map A was introduced. Applying Theorem 1.1 of [11], we conclude
that Ch,,m = Ch.

Proposition 3.5. Let m, h,p and a1 be as in Theorem 2.1. Let v be a compactly sup-
ported Radon measure on R' and assume that f x'dv(x) = 0 for all jaj < m. Then
v * h E Ch,,. and for all o in Dm

(3.11)(v * h, W) =Jn dp + 1 (Aw)QD()

where n(6) - f e(z,)dv(x) and w, = D3n(0) = f(ix)3dv(x). Furthermore, if f E Ch,
and Af = g (v + NA), then

(3.12) f (=)dv(x) Jnd + wTIV-.

PROOF: If O(z) = f (z + y)dv(y) then, from (2.4),

JI'l:2m
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and, as in (3.10), b= cn. Clearly, DC'n(O) = 0 for all aI< m. If V E Vm, then Dlti(O) = 0
for h-'I < 2m and for 1-,j = 2m

D-f'(O) = Z D-,()wo.

Thus (3.11) follows from (3.13). To establish (3.12) choose a real valued function r in D
with F(0) = 1 and for E > 0 let p(x)= fe-'r (',Y) dv(y). Then V, E Dm and

Y /) i J -gdy + Z (Av).D ' ' (°).

This yields (3.12) because f 7(x)dv(x) = lim (f,:p) and F(e) = r )n( ). I

For s as in (1.1) we have s = v * h with f Vdv = Z[V ciV(xi). Thus, such functions s
belong to Ch,m.

The distribution D'h, IKI m can be obtained as a limit of v * h's by choosing V's
that correspond to appropriate difference operators. Such v's satisfy the orthogonality
condition f X'dv(x) = 0, jal < m. Hence the following may be regarded as a limiting case
of the situation considered above.

Proposition 3.6. Let m,h,p and a-, be as in Theorem 2.1. Fix r. with [t[ _ m and
let p( ) = (i )". Then p E L2 (p) iff the distribution D'h belongs to Ch,,,. In that case
A ((-D)"h) = p D (w + NA) with w,, = Dap(O), lal = m.

PROOF: Let V) = D"cp so 4 = p(. If V E An then, by a calculation like that for (2.11),

E D'1(p;)(0)- = E E a,+0 Dcp(O) D (O)

1-yl_<2m Iol=n 13=n*

Using (2.4), we have

(3.14) ((-D)"h, ) (h,?k) = J dp + (Aw),6D;(0)

for all ( E Dm. This is (3.5) with f = (-D)Kh, g = p and v = w. If p E L2(a) we apply
Proposition 3.2 to see that f E Chm and Af = p D (w + NA). If p L2 (ji) we apply
Proposition 2.5 to obtain a sequence Vi E D2, such that f JI[I2dp = 1 and f pidi - oc.
We take 2k > m so that Da3;(0) = 0 when [/[ = m. Then (3.14) gives

((-D)'h, )= Jp ,dy -" -' .

Since + II A)(0)l = 1, we see that f = (-D)Kh cannot satisfy (3.2) and hence
cannot be in Ch,,m.
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4. Error Estimates. In this section we derive bounds on the difference between a
function g in Ch,m and a function gX of minimal Ch,m norm that agrees with g on a set
X C R' of 'interpolation points'. These error estimates involve a parameter that measures
the spacing of the points in X and are of order e in that parameter; our derivation assumes
t>m and

(4.1)< o

For the examples given in Section 5, this assumption is satisfied for arbitrarily large values
of e; see (5.2) below. In particular, the estimates apply to multiquadric interpolation since
the example there with a = -1 gives h(x) = -2Vrir(1 + 1X12 ).

Before starting on the error estimates, we look at a related implication of (4.1). Let
p.( ) = (i) ' . From

(4.2) W +z £ .

we observe that (4.1) holds iff p, E L2(ys) for all Jai . If a distribution has all of its
e-th order derivatives given by continuo'us functions then it will belong to Ct(R). Thus
the following result shows that (4.1) holds iff Ch,m C C'(Rn).

Proposition 4.1. Let m, h, M and a-, be as in Theorem 2.1. Fix a with ai > m. Then
the following are equivalent:

(a) P. E L'(M), where p.(C) = (i )';
(b) for every f in Ch,m, the distribution D O'f belongs to C(R") and there is a constant

c, such that for all f in Ch,,, ID'fIlo ! cl1f 1 ;
(c) there is a point xo in R' and a constant c0 such that for all f in Ch,, n C"O,

ID~f(xo)l < c.Ilflh.
If these are true, then for all f E Ch,m and all y E R", D'f(y) = (f, 6Y * (-D)h)h.

PROOF: Let f E Ch,m and let F be its inverse Fourier transform so that F = f. If
Ja = m then, by Proposition 3.2, $"F = A, with A,, given by (3.6). If Jai > m then
a = a' + ,3 with la'I = m. Hence, 0F = A,, with A,,, = A where A0 , is given by (3.6).
If (a) holds then A, is finite; for Jai = m, fdA0 I = f J 'g(C)fdp(C) + J(Av)oI and for
Ja1 > m, f dA0 I = I~g( )Jd,( ). Thus A0 is continuous and bounded by f dA0 I. Since
(i D)0f = (C0F)= A , we see that (b) holds with c,, = lip, e (pm(0) + NA)IIH. Thus (a)
implies (b).

That (b) implies (c) is obvious. To see that (c) implies (a), let 0 be an arbitrary function
in D(R" {}) and define u by (2.8) with a = Op and k = m. Then u E Ch,,,,, Au = ?EO
and lui 2 

- f (,k12diA. In addition, u E C o and

D'u(xo) = f -
i 11



Thus (c) gives If-) < cjIOIL2l(,). Since this holds for all ?b in
D(R' "- {0}), a dense subset of L2 (p), (a) must be true.

To verify the last assertion suppose f E Ch,,,, with Af = g (D (v + NA). By Proposition
3.6, A((-D)ah) = p. E (p.)(0) + NA). Using Proposition 3.4 with r = by we have
t() = e(, and

(4.3) A(6y * (-D)'h) = tp, e (p1m)(0) + NA).

Thus (f,6y • (-D)0 h)h = f g~'pd + vTAp I)(0) = (-i)'A 0 (y). Here A, is as above so,

as already noted, A,, = (iD)'; this gives the desired equality. U
Our error estimates will be based on the following.

Theorem 4.2. Let m, h, p and a., be as in Theorem 2.1. Assume that pi satisfies (4.1)
with e > max{1,m}. For a point xo in R' suppose that a is a real valued, compactly
supported Radon measure on R' such that

(4.4) p(xo) p(x)d(x)

for all p in Pt- 1.Then for all f in Ch,m

(4.5) If(xo) - f f(x)do(x) < clf.llh fi x - xol t dlol(x)

where c = {s + f l121/(e!) 2 d!()}'/ with s= IA,aI fore= m and s =0 for
IoI=m [L?=m

e>M.

PROOF: Let v = 6,, - a . By (4.4), fp(x)dv(x) = 0 for all p E Pt-. Since e > m,
Proposition 3.5 applies to v and from (3.12),

(4.6) If(X)dv(x)l tin E (w + NA)IIHIlf lh.

Here w# = f(ix)"dv(x), 1/1 = m. If e > m then w = 0; if e = m then

Wo= itm J(x - xo)'dv(x) = 0 - itm f (x - x)aOda(x).

Defining R(8) by eiO = E-= (ie)k/k! + R(8) we have IR(G)I < [81t/! and

e-i(zo,)n( ) -f '(z-xo,)dv(x) = R((x - xo, ))dv(x) f R ((x - x o,))d(x).

If b = f Ix - xoItdIoI(x), then In()j __ bjair/e! and, for t = m, Iwol < b. From this we
obtain Iln E (w + NA)IIH <_ cb and (4.5) follows. I
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To obtain the error estimates mentioned at the beginning of this section we apply The-
orem 4.2 to f = g - gX. Because of the minimum norm property of gX, Ilf 11h < Igikh.
Since other fixed bounds on Jif Il result in acceptable error estimates, the minimum norm
requirement on gX could be relaxed to simply a requirement that 11 X 1 Ih not exceed some
set bound. If we choose a so that supp a C X then f g - gXdg = 0 and (4.5) gives

(4.7) 1g(x0) - gX(xo)j _ clf lh f Ix - x0I1djoI(x).

To make such a choice of a possible, it may be necessary to restrict x0. From (4.4) we see
that if p = 0 on supp a then p(xo) = 0. Let

Nt-i(X) = {p E Pt-i : p(x) = O for allxEX},

X)t-1 = {xER" : p(x) = 0 for all p ENt(X)I.

Propositi-n 4.3. Let Et-l(xo,X) be the set of all real valued, compactly supported
Radon measures on R" that satisfy both (4.4) and supp a C X. Then Et-(xo, X) is
nonempty iff xo E (X) t- 1 .

PROOF: Necessity of x0 E (X)t-i is evident from the preceding discussion. To see that
this is also sufficient, consider the linear functionals on PI- 1 defined by Lz(r) = p(x).
Choose a (finite) subset Y of X such that {LY : y E Y} is linearly independent and

Lr E span{Ly : y E Y} for all x in X. Then Nt-(Y) = Nj-l(X) and (Y)t- = (X)t-t.
Also, {L, : y E Y} is a basis for (P-.1/Ne-i(Y))'; let {py + Nt-(Y) : y E Y} be the
dual basis. If the polynomials py are replaced by their real parts the result is still dual to
{LY : y E Y}. We may therefore assume that each Py is real valued. For x0 in (Y)1- 1,
L,, gives a linear functional on Pt- 1/Nt- 1(Y). Thus L, 0 = E cyL with cy = L, 0 (py )

YEY
and it follows that a = c6 3 is in Et- 1 (xo,X). I

yEY

Of course (4.7) will give a better error estimate if a is chosen from E-(xo, X) so as
to minimize f Ix - xoitdial(x); we made no attempt to do this with our choice of a in the
preceding proof.

We turn now to an analysis of the rate at which the error estimate goes to zero as
the coverage by X improves. For this we fix a region Q and a function g E Ch,, and,
for various X, look at bounds on Ig - gXIn given by (4.7). Here we use the notation
If In = sup-EO If(W)I.

The number d = d(12, X) defined by

(4.8) d(fQ,X) =sup inf ly-zl
yEzEX

is a standard measurement of how closely X covers Q. Using (4.7) and some mild assump-
tions about Q, we will show that

(4.9) Ig - gXIn = 0(d').

13



In order to use (4.7) we assume (4.1). In that case Proposition 4.1 assures us of a uniform
bound, for the e-th order derivatives of g - gX. From this and (4.9) we can deduce that
the derivatives DO(g - gX) of intermediate order 0 < Jai < t satisfy O(d'-I c' l) estimates.

To establish (4.9) we proceed along lines used by Duchon [6]. We start by assuming that
there are positive constants M, eo such that for every 0 < e < eo,

(4.10) Q c U{B(t, M) : t E T,

where T, = {t E R' : B(t,e) C Q), B(t,r) = {x E R' : Ix - tj < r}. Arguments in
Section 1 of [6] show that such constants M, eo will exist if f satisfies a cone condition.

Next we select a PI-1-unisolvent set of points a(a) E R', jai < e. A corresponding
set of Lagrange polynominals, p, E Pt- 1, 1hI < t, is determined by the requirements:
p'(a(a)) = 1, for a = 7; p (a(a)) = 0, for a 6 -y. The matrix Ac,# = (a(a))#, lai <
113-. ,s nonsingular. If p-,(x) = E (A- 1 )#,3 .yx then p.(a(a)) = (AA- 1 ),.y so p, = po.

1il<t
The function a -- a(a) can be identified with a point in B = r' B(a(a), 6). Clearly,

b E B ifT Ib(a) - a(a) < 6 for all Jal < t. Now choose b > 0 so that B,,,3 = (b(a))" is
invertible for all b E B. As justified by replacing the points a(a) with the points 6-'a(a),
we assume 6 = 1.

Choose R so that B(O,R) contains all the unit balls B(a(a), 1), [aI < t. The Lagrange
polynomials pb depend continuously on b. Let

A(r) =sup{ ipb(X)I : IxI 5r, bE B1.

For d = d(, X) < eo/R, st e = Rd and fix a point t in T,. The balls B(t + da(a), d)
are contained in B(t, Rd) = B(t, c) C 2. By (4.8), for every jai < e, there is at least one
point x, in X n B(t + da(a), d). If b is the point in B defined by x0, = t + db(a), and

b(lTt

with x0 arbitrary, then supp a C XnB(t, e) and (4.4) holds for all p E Pt-1 ; to verify (4.4),
take q so that p(x) = q((x - t)/d) and use , p0(y)q(b(a)) = q(y) with y = (xo - t)/d.

101<1
Suppose xo E B(t, eM + d). Then Ixo - ti/d < (RM + 1) so f dia i < A(RM + 1). Also,

for x E supp a,
Ix - xo < Jx - tj + It - xo < (R + RM + 1)d.

Thus f Ix - xol'dlal < C*d with C* = (R + RM + 1)t A(RM + 1). Since x0 is any point
in B(t, eM + d), (4.7) gives g - gXlB(9,,M+d) - cjljf 1C d. By (4.10), if y E !Q we can
choose t E Tc so that y E B(t, M). Then B(y, d) C B(t, cM + d) so for every y E Q2,

(4.11) 19 - 9Xl ,,d) - cC*lfIlhde.
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This is more than required for (4.9), but will be useful for derivative estimates.
By Proposition 4.1, f = g - gX is in C'(Rn). For yE fl, OE Rand u E R" with

Iul = t, let o(O) = f(y + Ou). Then

(4.12) ) k! E + Gu).
Ial=k

By (b) in Proposition (4.1), Io(t)Ig < C'IIfIjh with C' = ! E ccf/c!. From (4.11) we also

have a bound on IjII where I is the interval [-d, d]. For 0 < k < t, the results of Gorny
[8] summarized in [12] then give

(4.13) I( (0)1 < CkIU/llhd'-k

where Ck = 16(2e)k(cC')1-k/1 [max(C', M!-c C°)]'/. Note that Ck can be calculated
from n, t, m, h and M; the choice of R depends only on f and n so C' requires only t, n, M
while c and C' require only m, h, t, n. Combining (4.12) and (4.13) gives

Uc Ck
(4.14) sup Z -jD-f(y) ! }lIfIh df-k1U= I l fl =k "k"1h1

for every y E Q. Since

Ivik = sup u
1U-1 al=k

is a norm for Vk, we conclude that ID'f I = 0 (dt- lal) for every jal <0 f. To summarize
we state

Theorem 4.4. Let m,h,p and a., be as in Theorem 2.1. Assume (4.1) holds with 0 >
max{ 1,ml and suppose f is a subset of R" that satisfies (4.10) for some M, co > 0. Then
there are positive constants C, do such that if f E Ch,m vanishes on a set X and the number
d = d(11, X) defined by (4.8) is less than do then for all la 1 < e,

(4.15) ID 'f In<: Cllf 111 dt- 10fl .

5. Examples. In this section we look at some examples of conditionally positive definite
functions h. For these examples we determine the measure p and coefficients a.,, I =I 2m
that appear in (2.4). As can be seen from (5.2) below, these examples all satisfy (4.1) and
do so for arbitrarily large choices of t. Thus the error estimates in Section 4 apply, showing
that for interpolation based on any of the h's given here, approximation of arbitrarily high
order can be achieved.

For a E R, let w. be the function on R" defined by

2 K(._.)/2 (jKI)
(5.1) w6 (4 ) = (27r),/ 2 2a/2 11(n-..)/2

15



where K&, is a modified Bessel function of the third kind. From the behavior of K,(r) at
r = 0 and r = oo we note that

(5.2) f 1 121w.( )d < 00

iffa+2>0. ForaER, a50,-2,-4,.... let

r(a/2)
(5.3) ha(X) = (1 + IX2)W2'

and for a = -2k, k = 0,1,2,... define ha by

(5.4) h- 2k(x) = lim [ha(x) - r(a/2)(1 + IX12)k ]
a-2k

(-1)k+

= k! (1 + 1X12)k log(, + x12).

The last equality can be verified by using r(s + k + 1) - (S + k) ... (1) r (s) together
with

d (1 + IX12)1 = ir (1 + 1x1)-/2- (1 + Ixi2)
it , a--2k (-a/2) - k

Lemma 5.1. f E V(R , {0}) then for all a in R

(5.5) J ha(X)V(X)dX = I ;(V)wa( )d .

PROOF: A basic fact used in the theory of Bessel potentials is that (5.5) holds for all p E S
if a > 0; see [2], [3] or [4]. For ; E D(R" _,, {0}) an analytic continuation argument gives
(5.5) for a 6 0,-2,-4,.... To obtain (5.5) for the remaining values of a = -2k, we take
limits. If f(t) = (1 + Ix12)' and a : 0, -2,-4,..., then

[h.(x) - r (a) (1 + lx12)k) = (a+ k) r (a) I' f, (k _ (a + k)s) ds.

Estimates from thi an be used to justify an application of Lebesgue's dominated conver-
gence theorem that shows

Jh_2k(x)P(x)dx = lim_ J[h.(x) - r (a) (1 + Ix12) ] p(x)dx.

Now E D(R" {0}) so f(1 + IxI2)kW(x)dx = 0. We therefore have f h_ 2k(x) p(x)dx =

lim.--2k f@(O )W( )d which gives (5.5) for a = -2k. 3
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Theorem 5.2. Ifm is a nonnegative integer and a+2m > 0 then (2.4) holds with h = ha,
dp( ) = W(t)d , and a., = 0 for 17I = 2m.

PROOF: If m = 0 then a > 0. As already mentioned, (5.5) holds for all p in S if a > 0;
thus we have (2.4) with m = 0 and a > 0. For the rest of the proof we assume m > 1. Let

Ua~)= [~@~)- 2m-1 kU Cilz"' - (o E (-i(x,0) W(~C
k=O

By Proposition 2.2 we have: ua E C(R"), Ua(X) = o(IX12 m), and for all V in S

f ua(x)V(x)dx (Sa,c )

where (Sa, 4) = f [0 - T 2 m-t,](C)Wa(C)dC. Let Ta be the tempered distribution defined
by fha(X)V(X)dX = (Ta,, ). By (5.5), (Ta,/i) = (Sa,kl for all tk E V(R" - {0}). Thus
(Ta - Sa) = h. - Ua is a polynomial q. Both ha and Ua are o(Ix12m) at IxI = oo, so
deg q < 2m. The desired instance of (2.4) now follows from (ha - q, V) = (Sa, ). 1

6. Equivalence of definitions. Theorem 6.1 below, when combined with Proposition
2.4 shows the equivalence of the definition of conditional positive definiteness adopted here
with that used in [11]. As in [11] we define P,*- to be the space of all finite measures
v on R' that have support consisting of a finite set of points and satisfy V(p) = 0 for all

p E Pm--. The space obtained by relaxing the support requirement to allow compact sets,
rather than only finite sets, will be denoted by (P-,). If v = EN= ci6., then

N N

Vv * h) = ZZjh(xi - xi)
i=1 j--I

and v E P= iff cix = 0 for all Ial < m. If dv(x) = V(x)dx then

v v-h = JJ (xg(y)h(x - y)dxdy

and v is in (P,-,) if v E D,,.

Theorem 6.1. Let h be an arbitrary function in C(R"). If v (Vh) > 0 holds for all

v E P*-, then it holds for all v E (P -,).

PROOF: Fix v in (P-,) and let K be its support. Recall that the finite Borel measures
on K form the dual C(K)' of C(K), the continuous functions on K with the sup norm
topology. The norms involved in this duality will be written as follows: for f E C(K),

IfIIC = SUp EK If(x)l; for a E C(K)', 1lall = f dloa. Let hy(x) = h(y - x). K is compact,
so for every c > 0 there is a finite set F, C K such that if y E K then Ihy - hY0II, <e for
at least one Y0 E F,. If a is in the weak* neighborhood

U(vF,,C) = {a E C(K)' : j(a- v)(h,)I <e for all yo E F,}
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and y E K then, for a suitable choice of Yo E Fe,

RO, - V) (h) I = 10, - V) (h, - h,0) + (a - V) (h.)$ < (Ila - VII + 1) E.

Since (a-u)*h(y) = (a-v) (hi), we get l(a-V)*hIK _< (Ila-vull+l) for all a E U(v, F,, ).
For such a let w be the number defined by

w = ll (l ) - + (-) = a ((a - * X) + (a - V) (zi*h)

and observe Iwi lIal(a - * IK + (0- V) (V* A) I.

Let B = {a E C(K)' : Ilall _ IIvll} and take C = B n (P,,L_,),S = B n P -l. By
arguments given below, S is weak* dense in C. This allows us to choose

a ESf{E U(vFe) : l(a - v) (v*h) I <}.

For that choice we have a ( * h) > 0 and

I _< lll (Ila - vll + 1)e + e < IIII (2lzll + 1)e + e.

Since w is arbitrarily small, we see that v (V) must be arbitrarily close to points on

the positive real axis and hence must be greater than or equal to zero.
C is convex and weak* compact so, by the Krein-Milman theorem, C is the closed convex

hull of its extreme points. Since S is convex it will be weak* dense if it contains all of the
extreme points of C. Suppose a0 is an extreme point of C that is not in S. Then supp a0
cannot be a finite set so we can subdivide it into J = 2(1 + dim P,,,) disjoint subsets
Ei,...,Ey with lao(E 3) # 0. Let aj(E) = ao(E, n E) and take ca,j = f xadai(x). By a
dimension argument, there is a point a E R - {0} that satisfies the equations:

J J

Z aillaol1 = 0; E a, coj = 0, laI < m.
j=1 j=1

For t E R, let at -= F 1 (1 + taj)aj. Then a' E (P-) and if (1 + taj) 0,

J J

Il, l1 = (1 + t a,)l all = E la,ll = ilaoll < I11,ll.
j=1 j=1

Thus at E C for all t in an interval about 0. This contradicts the assumption that a0 was
an extreme point of C because a' = ao only if t = 0, as seen from the fact that a # 0 and

llaill # 0 for all j =1,...,J. 1
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Polyharmonic Cardinal Splines:
A Minimization Property

W. R. Madych* S. A. Nelsont

Abstract

Polyharmonic cardinal splines are distributions which are annihilated
by iterates of the Laplacian in the complement of a lattice in Euclidean
n-space and satisfy certain continuity conditions. Some of the basic prop-
erties were recorded in our earlier paper on the subject. Here we show
that such splines solve a variational problem analogous to the univariate
case considered by I. J. Schoenberg.

1 Introduction

Recall that a k-harmonic cardinal spline is a tempered distribution u on Rn
which satisfies

(i) u is in C 2k-n- 1 (Rn) and
(ii) kU =0on Rn\Zn .

Here A is the usual Laplace operator defined by

and, if k is greater than one, Ak denotes its k-th iterate, Ahu - A(Al-lu).
Of course A' = A and Z" denotes the lattice of points in R n all of whose
coordinates are integers.

Such distributions were considered in [11 where their basic properties were
recorded and our motivation for studying them was indicated. One of the key
developments there was the existence and uniqueness of the solution to the so-
called cardinal interpolation problem for k-harmonic splines. This result may
be summarized as follows: Given a sequence {ajI, j in Z n , of polynomial growth
and an integer k satisfying 2k > n + 1 there is a unique k-harmonic spline f
such that f(j) = aj for all j in Zn .

In this paper we continue recording properties of these distributions. Specif-
ically we show that under appropriate conditions the k-harmonic splines are
solutions of a variational problem. These properties together with those con-
sidered in [1] are remarkably similar to well known properties of the univariate
cardinal splines of I. J. Schoenberg, see [2]. For example, much of the mate-
rial in this paper parallels matter found in [2, Chapter 61. On the other hand,
because of the non-existence of B-splines with compact support in the general

*Department of Mathematics, University of Connecticut, Storm, CT 06268. Both authors
were partially supported by a grant from the Air Force Office of Scientific Research, AFOSR-
86-0145

t Department of Mathematics, Iowa State University, Ames, IA 50011.



multivariate case, our development is significantly different from that found
there.

The variational problem alluded to above is considered in the context ofI the space LQ(RI), the class of those tempered distributions whose derivatives
of order k are square integrable. The properties of this class and its discrete
analogue which are needed for our development are presented in Section 2. In
Section 3 it is shown that the class of k-harmonic splines in L2(R") is a closed
subspace of L2 (R") whose corresponding orthogonal projection operator is quite

natural; this is the key to what may be called the minimization property of these
splines. Necessary and sufficient conditions on a sequence {vj}, j in Z", which
allow it to be interpolated by the elements of L2(Rn) are given in Section 3;

furthermore, it is shown that the unique element of minimal L'(Rn) norm which
interpolates such a sequence is the k-harmonic spline interpolant.

jThe conventions and notation used here are identical to that in [1]. In
particular, SH&(R") denotes the space of k-harmonic splines on /"; k is always
assumed to be an integer such that 2k > n + 1. The distributions Lk and 4 k
are defined by the formulas for their Fourier transforms,

(2) L ( 2) -(2 )141 2 k

and -iEzn if - 21rJJ- 2k
and

(3) 4k(f) = IfI2 k(Lf().

Their properties which are relevant to our development are listed in [1]. Here
we merely recall that Lk is called the fundamental function of interpolation;
it is the unique k-harmonic spline such that Lk(j) = 60j, j in Z", where 60j
is the Kronecker delta. In particular, every k-harmonic spline u enjoys the
representation
(4) u(z) = uUj)Lk (z -)

jEZ'

where the series converges absolutely and uniformly on compact subsets of R.
For more details, background, and references see [1].

2 Definition and properties of L2(R") and t2(Z,)

The linear space L2(R") is defined as the class of those tempered distributions
u on R" all of whose k-th order derivatives are square integrable; in other words

L(R") = {u E S'(R") : D'u is in L2 (R " ) for all v with I"I = k}.

For this space a semi-inner product is given by

(5) (u, v)h = E CJ, D"u(z)DMv(z)dz

where the positive constants c, are specified by

(6)~ = E c,,42b.
Iv=k

The semi-norm corresponding to (5) is denoted 11u112,k, thus Ilu12 ,t = (u, u).
The null space of this semi-norm is irk-(R), the class of polynomials of degree
less than or equal to k - 1.
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Note that there are many semi-norms equivalent to IIuU12,k on L2(Rn). The
reason for the particular choice used here is the fact that for u in S(R"), by
virtue of Plancherel's formula,

In view of(3) and (4), it is not difficult to conjecture that it is the minimization
of this particular serri-norm subject to the appropriate interpolatory conditions
which leads to a solution which is a k-harmonic spline.

The objective of this section is to develop properties of L2(R n ) and its dis-
crete analogue which will be needed in our treatment of the variational problem
in the following sections.

Since the norm on L2(Ro) only allows us to distinguish between the equiva-
lence classes determined by it, dealing with the individual elements of L2(R") is
rather slippery business. Nevertheless we regard the space L2(R") as a subspace
of tempered distribution and not as a collection of equivalence classes. Thus if
a distribution u is representable by a continuous function f, namely

(u,)= U, ) = JR f(z)O()dx

for all 4 in S(R"), then, following standard convention, we simply identify u
with f and say that u is continuous. The following propositions allow us to get
a somewhat better grip on the distributions in L'(RI).

The first proposition follows from a routine argument and may be regarded
as folklore.

Proposition 1 S(R) is dense in L2(Rn).

The notion of unisolvent set is needed in the statement of the next proposi-
tion. Recall that a unisolvent set f2 for ,,-,(Rn ) is a finite subset of Rn con-
sisting of k(n) elements with the property that if p is in rk-.(R")and p(z) = 0
for all x in Q then p(z) = 0 for all z in Rn. Here rk_1(Rn ) denotes the class
of polynomials on Rn of degree no greater than k - I and k(n) denotes its
dimension.

Proposition 2 Assume 2k . n + 1. Then the elements of L2(Rn) are con-
tinuous functions and there is a linear map P on L2(R") with the following
properties:

(i) Pu is in ,,_1(tn).

(ii) p 2U = pU.

(iii) If i is a unisolvent set for 'Tk.1(Rn ) then

(7) IPu(z)l < C(t + gzIk-")(i,,Ih,+ 1t.n)

where Ilulln denotes the mazimum of u on (2 and C is a constant which depends
on ( but is independent of u.

(iv) If Qu tu - Pu then Qu is continuous and satisfies

(8) tIQutI2,b = IIUI)2,t

3



and
(9) IQu(z)l < C(1 + IXI)llu1l2,k
where C is a constant independent of u.

Proof The operator P is defined by the formula for the Fourier transform
of Pu. Namely, if 0 is any element of S(R") then

(10) (F, ) = (P',POX)

where p# is the Taylor polynomial of of degree k - 1 and centered at 0, X is
a fixed function in C "(Rn) which is equal to one in a neighborhood of 0 and
supported in the unit ball centered at 0. Of course PX denotes the pointwise
multiplication of p# and X. (Note that the definition of P depends on the choice
of x.) Pu is well defined by formula (10). It is easy to check that P is linear
and satisfies statements (i) and (ii) of the proposition. Next we verify (iv).

Write
(11) Qu- =u - Pu = ul +u2

where fi = xqu, u2 = Qu - ul, and X is the function in the definition of P
above. More specifically, for any in S(Rn)

(12) (,) (, ( - POW

and
(13) (f,2,) (f, (1 - x)).

Since fil has compact support, ul is analytic and

(14) ul(z) = (2r) -" 2(fi, e,)

where e,(t) denotes the exponential e(z,' ). Using (12) write

(15) (i, e,) (iq.x)

where
(16) q.(f)X(f) = [e ( ) - p.()]x( = (Z, "k,.(fX(f

and 10, is analytic and bounded independent of z. Since

rIl=k

formulas (15) and (16) result in

(17) (u1 ,e.) = 10.x)
Ivl=k

where u, = ('u(C). Recalling the fact that if jvI = k then ia is in L 2(Rn) with
norm dominated by 1JuJ12,k we see that (17) implies that

(18) I(fi,,e,)l < Clzlkjlull2,k

which together with (14) shows that

(19) IuI(X)l < C¢zkluIIk.
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From (13) 62 = (1 - X)ti and thus u2 is in L'(R " ) since

(1 - x())( {JI ! (1 - x(f))21f-kdf }IUI 2,.

This implies that u2 is continuous and

(20) 1u2(X)l < C¢juI 2,k.

Now, ul and u2 are both continuous and hence it follows that Qu is also. Identity
(11) together with inequalities (19) and (20) imply (9). Since (8) is an immediate
consequence of the fact that u - Qu is in ir-t.(Rn) the proof of statement (iV)
is complete.

Finally, to see (iii) let 0 be the collection of points {*i, .... zl} where N =
k(n) is the dimension of ir-.(Rn) and let pi, j = 1,..., N be the polynomials
in ir&k-(R") which are uniquely defined by pj(xm) = 6jm where 6j, is the
Kronecker delta. Since Pu = u - Qu is in rkl(Rn) and 0 is unisolvent for
IrklI(R

n ) we see that

N

(21) PU(x) = E{U(zj) - Qu(z,)}p,(z).
j=1

Now
(22) Ju(zj) - QU(z,)I 5 ju(z,)l + C(1 + Izj lh)lulJ2,.k

and
(23) Ip(z)l < C,(1 + Izk-1).

Formula (21) together with inequalities (22) and (23) imply the desired result.

The operators P and Q are complementary orthogonal projections on L(Rn).

That is, every u in L2(Rn) can be expressed as

(24) u = Pu + Qu.

It is clear from the proof that the operator P is not unique.
We now turn our attention to a discrete analogue of LI(Rn) which we refer

to as 2(Z). This clas of sequences may be described as follows.
First, recall that Y a real, is the class of those sequences u = {uj}, j in

Zn, for which the norm

(25) N.(u) = sup J
jez- (1 + Il)a

is finite. Let
(26) y =O UyandY

~a
where the intersection and union are taken over all o, -oo < a < oo. Also,
we say that the sequence u = {uj is in ir-i(Zn ) if it is the restriction of an
element p in r1h1(R") to Z"; namely, uj = p(j) for all j in Z" where p is in

:-_ 1(z").
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Given a sequence u in Y~O, for each i, i = 1,..., n, Tiu is the sequence

(Tu)j = uj+e, - Uj

where e, is the n-tuple with 1 in the i-th slot and 0 elsewhere. In other words,
Ti is a difference operator in the direction ei. For any multi-index v T' is the
usual composition (product) of T1, ... , T,, namely 7'n ...

The space £.(Zn) consists of those elements u = {UJ} in Y for which

(27) IIu I2 = 1 j (7 'u)j12

jez. 1,l=k

is finite. The corresponding semi-inner product is given by

(28) (u,v)k - E (T~u)j(Tv)j.

The notation used to denote discrete sequences and certain discrete sequence
norms is identical to that used for the 'analog' case considered earlier in this
section. This should cause no confusion; the meaning should be clear from the
context.

Proposition 3 Y-' is dense in Ik(Z").

Proposition 4 There is a linear map P on q(Z n ) with the following proper-
ties:

(i) Pu is in i.-.(Z").

(ii) P 2u = Pu.

(iii) If 0 is a unisolvent set for irk- I(Z n ) then

(29) IPujl _< C(1 + Ujlk-)(11u112,k + lullln)
where Iullo denotes the mazimum ofu on 0 and C is a constant which depends
on 0 but is independent of u.

(iV) If QU = u - PU
(30) IIQUII12, = 11U112,,
and
(31) IQujl _< C(1 + V1)IluIl2.,
where C is a constant independent of u.

The proof of these propositions essentially consists of identifying the space
q(Z n ) with an appropriate class of tempered distributions and applying the
arguments used in proving the analogous facts for L (R n ) ib Propositions 1 and
2 mutatis matandis. Indeed, observe that Y equipped with the seinorms
defined by (25) is a topological vector space whose dual can be identified with
Y'. Now, the Fourier transform can be defined on Y- 00 in the natural way;
namely

u(t = (2r)- ni2 E u(J)e - '<j ' >.
je;Z
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It maps Y- into the class of infinitely differentiable periodic functions on R".
Hence the Fourier transform may be defined on Y' via duality in the usual

manner; it maps Yoo onto the class of periodic tempered distributions. With
these identifications, it should be clear how to modify the arguments used in
the proof of Propositions I and 2 so that they apply to t2(Z).

Another very useful identification may be described as follows.
Let M(Zn) be the class of those tempered distributions f which enjoy the

representation
(32) f(c) aj(z-j)

jEZ-

where 6(z) denotes the unit Dirac distribution at the origin. Note that M(Z n )
is a closed subspace of S'(Rn). Also recall that the Fourier transform is an
isomorphism of M(Z n ) onto the class of periodic distributions.

Observe that Y' and M(Z") are algebraically isomo-.phic via the mapping

(33) u --- uj6(z - j).

Thus, whenever convenient, we may view elements of Yo as being in M(Z n)

and vice versa.
Finite differences, such as those used in the definition of 2(Zn), may be

considered elements of M(Zn) as follows.
Let F be the subset of M(Z n ) consisting of those elements whose repre-

sentation (32) contains at most a §nite number of non-zero coefficients aj. The
Fourier transform is an isomorphism of 7 onto the space T consisting of trigono-
metric polynomials. Note that X can be identified with a class of finite difference
operators via convolution in the natural way; namely, if

(34) T(z) = Eaj6(z - j)

is an element of " and u is any tempered distribution then

T* u(z) = E aju(z -j)

is a finite difference of f. Thus we will often refer to elements of 7 as finite
differences.

In view of the identification (33), we may view 7 as the clams of finite dif-
ference operators on YOO or S'(R). In particular, the operators 7T used in the
definition of ,(Zn) may be regarded as elements of 7 whose Fourier transforms
are the trigonometric polynomials

(35) = (e'. - ... - )"..

More generally, if T is a finite difference operator of form (34), we write Tu
to denote T* u if u is in S'(R'") and, if u is in Y, to denote the sequence
representing the natural action of T on u, namely,

(Tu)j = aiuj-i
i
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3 Polyharmonic splines and L2(R")

Recall that a continuous function f on R' interpolates a sequence u = {uj I if
f(j) = uj for all j in Z". Proposition 2 together with existence and uniqueness
for the cardinal interpolation problem for k-harmonic splines, see [1], clearly
imply the following.

Proposition 5 If2k > n + 1 and u is in L2(Rn) then u is continuous and of
polynomial growth. The sequence of values {u(j)}, j in Z n , is in yk and there
is a unique k-harmonic spline which interpolates this sequence.

If u Js in L2(R n ) let Sku be the unique k-harmonic spline which interpolates
the data sequence {u(j)), j in Zn; that is Sku(j) = u(j) for all j. Recall that we
may write
(36) Sku(z) = u(j)Lk(z -j)

where Lk is the fundamental spline defined in the Introduction. Clearly the
mapping u -* Siu is linear and Sku = u whenever u is in SHk(Rn). In what
follows we will show that this mapping is an orthogonal projection of L2(R n )

onto SHk(R")nL(R").
Throughout the rest of this section P and Q wil denote a fixed pair of

complementary projections whose existence is guaranteed by Proposition 2. We
begin with some technical lemmas.

Lemma 6 Suppose 2k > n+l and {Un}, m = i.... is a sequence in L2(R").
If {u,) converges to u in L2(R n ) then

(i) {Qu.} converges to Qu uniformly on compact subsets of R".

(ii) {SkQunI converges to SkQu uniformly on compact subsets of R".

Proof Choose any positive numbers r and c and observe that (i) will follow
if we can show that
(37) IQu(z)- Qu(z)1 < -

whenever m is sufficiently large and for all z such that Izi < r. From (9) we
have
(38) IQU,.(Z) - QU(Z)l _< C(l + IZl )ll. - Ul12,k .

Now from (38) it is easy to see that choosing m so that

11U - uII2,k < {c(1 + rk)) -1

implies (37).
To see (ii) observe that (36), (38), and the linearity of Sk imply

IS, Qu,(z) - SQu(z) 1<Cf 5 (1+ljI)L,(z-j) "Um -U",,,

Now, using the exponential decay of Lk, see (1], it is clear that (ii) follows from
essentially the same reasoning as (i). U
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Lemma 7 If2k > n + 1 and u is in S(R n ) then Sku is in L2(R n ) and there is

a constant C, independent of u, so that

(39) IISkUIl 2,k < CflUflb,

Proof Recall that
(40) §kU(t) = U(4)ik(t)~where
where U( ) = E - 2rj)= (2r)- "12 E u(J)e - i<j ' > "

jEz- jFZ-

Observe that by virtue of (36), (40), and Plancherel's formula (39) is equivalent
to(41) J 1I2 IU()Lk(I=2df 5 C f-I 2kf(f)I2df.

That Sku is in L2(R") follows from the readily transparent fact that the right
hand side of (41) is finite.

The remainder of this proof is devoted to demonstrating (41). This demon-
stration involves verifying the two inequalities

(42) J. 112klU(f)Lk()j 2d4 A_ I112kU(I 2df

and

(43) j IfIUIU( )l2df _ B] I I2kI( )ld

where A and B are constants independent of u and Q1 is the cube

Q"= {f : _-r< 4 <5 r, j=l 1.....n}.

It should be clear that (42) and (43) imply (41).
To see (42) recall that IfI2kjLk(t)j2 = 4k( )Lk(t), where 4k is the periodic

function defined by (3); if necessary, consult [1] for more details concerning this
function. Let Q? = 21rj + Qn and write

(44) JRm  Ij2 IU(f)Lk(fIj2 d( = .ii/JU(C24k(f)L'(f)df
jez.

/ J IU(t)124k(f)L.(t + 2,j)dC

jgzn

where the last equality follows from a change of variable of integration and the
periodicity of U and 4k. Now let aj be the maximum of Lt(t + 2rj) for f in
Qn and note that 0 < 4k(f) = II 2kLk(f) < ao0lk iff is in Q", and recall that
aj decays exponentially. Thus we may write

(45)

orJul ()i 2 4i(Z)L(t + 2yj)dz 5 ao ( aj) wt IA 2k (je ) 2 dz.

Formula (44) and inequality (45) imply (42) with A = ao, (X-jez- aj)

9



To see (43) observe that for f in Q we may write

Itj1J1lU(t)l2 < It k E Ifi( - 2,rj) I

2

bit- 2IjlI fi4 - 2r) I)2

_ Z bil - 21ril I(t - 2-i)Ibjlt - 2rjI'Ii(t - 2irj)l
iEz jEz-

where bo = 1 and otherwise bj is equal to the maximum of It - 21jl - h over t in
Q". Integrating the last expression involving U over Q" and observing that

I. it - 2,ilkfi(t - 21ri)It - 2rjIk If(t - 27rj)Idt 5 VV

where

j = ( l- 2Irj2kI(& - 2,rj) d12) 1,2

allows us to write

(46) J ItI 2kIU(t)I2dt < 5 bibjVj1.i =i Vi)
iez-jEzZ

Note that 2k > n implies that the sum 'jEz- b3 is finite, thus by virtue of (46)

and Schwarz's inequality we have

Since
w j2 ItI 1Ii()I 2dC,

(47) implies (43) with B - E b2. j

Proposition S Suppose 2k > n + 1 and u is in L2(R"). Then Sku is L2(R")

and there is a constant C independent of % so that

(48) IIS uII.k _5 CllU1l2,k

Proof By Lemma 7 S& maps the dense subspace S(R") of L2(R") contin-
uously into L2(R"). Let &1 denote the continuous extension of S1 onto all of
L2(R"). The proposition will follow if we can show that

(49) Su = S§u

in L2(R") for all u in L2(R").
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To see (49) let P and Q be a pair of operators whose existence is guaranteed
by Proposition 2. Now let u be any element of L2(Rn) and let {um} be a
sequence in 6(R n ) converging to u in L2(Rn). By virtue of Lemma 6 the
sequences {QSkum} and {SkQum} converge to QSku and SkQu respectively,
uniformly on compact subsets of Rn. Since IIQSkum - SkQuii2,k, = 0 it follows
that QSku - S&Qu = p, where p is a polynomial in vk_(Rn). Hence

(50) §ku - Su = q,

where q is a polynomial in irk- 1.(R"). From (50) it follows that Sku is in L2(R n )

and satisfies (49). U

Theorem 9 The mapping u - Sk u is an orihogonal projection of L(R n ) onto
SHk(R-)nL2(Rn).

Proof In view of Proposition 8 it suffices to show that S is idempotent and
self-adjoint.

Since Sku is a k-harmonic cardinal spline for any u in L2 (R") and, by virtue
of the uniqueness of cardinal interpolation, Sku = u for all u in SHv(Rn)nL,(Rn)
it follows that Sk(Sku) = Sku for all u in L2(R n ) and hence SA: is idempotent.

To see that S is self-adjoint let u and v be any elements of 8(R") and, as
in the proof of Lemma 7, let U and V be the periodizations of f and 0, namely,

U(t) -tE (- 27j)

and a similar formula for V. Recall that S§U = ULk and 1412kL,(t) = 4k(O,
use Plancherel's formula and the fact that U, V, and 4k are periodic, and write

(S , V)I k= JR[ I12*U(()Lk( )ii(4)d = IR'
JR. JR.

1=1kIR' ~ ejk =d (u, SkV),,

where Q" is the cube {: < (i< w, j = 1,..., n). Hence

(51) (Sku, v), = (U., SI)k

holds for u and v in S(Rn). Since 8(R n ) is dense in L2(R n ) and Sk is continuous
it follows that (51) holds for all u and v in L2(R n ) and thus S is seif-adjoint.

Theorem 9 together with elementary facts concerning orthogonal projections
on Hilbert spaces imply some interesting facts concerning k-harmonic splines in
this clas. We list several transparent corollaries.

Proposition 10 If2k > n + 1 then SHk(R")nL2(R") is a closed subspace ofLI(R").

11



Proposition 11 If 2k > n + 1 then the following holds for all u in L2(R"):

(52) 1IU112,k = Ilu - SkuIl 2,k + IlSkuIl2,k

and thus(53) Il IS 2,k, _< IlUll,k.

Suppose u is any element in L2(R n ) and consider the sequence of values
{u(j)}, j in Z n.We define Mu to be that subset of L2(R n ) consisting of those
elements v such that v(j) = u(j) for all j in Z". Clearly Mu is an affine subspace
of L2(Rn). In view of (53) it is not difficult to see the following concerning Mu
and Sk.

Proposition 12 If2k > n + 1 then there exists a unique element w in Mu such
that

11W112,k = min I1V112,k

and w = Sku. In other words, Sku is the unique element in Mu of minimal
L2(R n ) norm.

4 Cardinal interpolation in L (Rn) and 2(Z).

As mentioned in the introduction, in this section we present necessary and
sufficient conditions on a sequence {vj}, j in Z n , which allow it to be interpolated
by the elements of L2(Rn). In addition the interpolating element of minimal
L2(R n ) norm is characterized.

First recall the definitions of the class F of finite difference operators given
earlier. We say that T in T is of order k F t(i) = o(Itl) but not o(1 1h) as f
goes to 0.

Proposition 13 Suppose 2k > n + 1, u is in L2(Rn), and T is any finite
difference operator of order > k. Then

(54) IT U(.i)l2 < C ll,,lI1 ,

jeZ.

where C is a constant independent of u.

Proof If u is in S(R"), let

U( ) = (2-) -n/2 E u(j)e-'',)

and recall the definition of 4 ({). By virtue of Parseval's identity and the fact
that IT(e)12/ 4 1(f) is bounded we may write

ZITu(i)12 -- J_ IT( )U(O)I2d
jEZ*

= f Ij(I 2T(I 2'(I1'( )I2d

12



= Cf IU .kt1112d

= Cf IUt.ktII-k2t~d

= CIISkUII 2,k•

Since IISSUII2,: < IIlul,k we may conclude that (54) holds whenever u is in
S'(R"). To see that (54) holds for all u in L2(R") let P and Q be the opera-
tors whose existence is guaranteed by Proposition 2, recall that Tp = 0 for all
polynomials in rk-(R"), and observe that

(55) TQu = Tu

for all u in L2(R"). Choose any element u in L2(Rl), and let {u,} be a
sequence in S(Rn) converging to u in L2(R"). By virtue of Lemma 6 {QUm}
converges to Qu uniformly on compact subsets of RI and hence in view of (55)
{Tun(j)} converges to Tu(j) for all j in Zn . This last observation together with
the fact that (54) holds for each urn implies that

ITU(j)12 < CllUI1l2,k

where the sum is taken over any finite subset of Z 'h. The last inequality of
course implies the desired result. U

Wesay that a finite collection Tm , m = 1,..., N, of finite differences satisfies
condition Tk if

is in LOO(R"). Note that the TV 's used in the definition of t2(Z n ) enjoy this
property. Also note that for every positive integer k there is a finite collection
in Jr which satisfies condition 7.

Proposition 14 Suppose 2k > n + 1, u is a sequence in tk(Z"), and f. is the
unique k-harmonic cardinal spline which interpolates u. Then fu is in L2(Rn)
and(56) II fll2,k <5 CllUll2,L,

where C is a constant independent of u.

Proof Suppose u is in Y-1, then

fu= E ujL(z-j),

the function E
I jez-

is well defined, and f = UL,. Applying Plancherel's formula and the fact that
the collection {T": IvI = k} satisfies condition rt we may write

Il1u1"2,h - JU(f)Lk (12)II2 kJdf

13



=j~ = JR. Iu 1€()

= CIIUI12,k

Thus (56) holds for u in Y-'. In view of Propositions 3 and 4 the desired result
'ollows from a density argument similar to that used in the proof of Proposition
13. U

Corollary I The mapping

{ j} - fu = ujLk(x -j)
jEZ.

is an isomorphism between 4(Z") and LI(R")nSHk(R") such that

Cll-112,k <_ I1fuII2,k _< CllUll2,k

where c and C are positive constants independent of u.

We conclude this paper by summarizing the contents of the above two propo-

sitions in the following theorems.
Theorem 15 Given a sequence u = {uj), there is an element in L2(R " ) which

interpolates it if and only ifau is in to(Zr)

Combining the results in this section together with Propositions 11 and 12 easily
produces the following conclusion.

Theorem 16 Suppose u is in k(Zn). Then there is a unique k-harmonic spline
f. in L2(Rnt)NSHk(R") which interpolates u. This interpolant fu has the prop-
erty that

IIf1uI2,k < 11g112,.
for any g in Lk(R") which interpolates u, unless g(z) = fu(z) for all x in

R. In other words, fu is the unique element of minimal L2(R " ) norm which
interpolates u.
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Error bounds for multiquadric interpolation

W. R. Madych and S. A. Nelson

Abstract

A class of multivariate scattered data interpolation methods
which includes the so-called multiquadrics is considered. Pointwise
error bounds are given in terms of several parameters including a
parameter d which, roughly speaking, measures the spacing of the
points at which interpolation occurs. These bounds can be of arbi-
trarily high order in d.

§1. Introduction

To avoid technical complications which are not germaine to the basic
ideas we restrict the major part of this report to the following simple setup.

Let h be the function defined for z in R ' , n > 1, by the formula

h(z) = -v_ + I-lF (I)

where IzI is the Euclidean norm of z. Given data (xj,fj), j = 1,...,N, where
X = {X,.. . ,N} is a subset of points in Rn and the fj's are real or complex
numbers, consider the function a defined by

n

a(X) = c.+ Ecjh(z- ) (2)
j=1

where the ci's are chosen so that

n N

Ecj = 0 and co + Ecjh(zi- zj) = fi, i 1,...,N. (3)
j=1 j=1

It is well known that the system of equations (3) has a unique solution and
thus the interpolant a(z) is well defined. Recall that the system

N

Eajh(zi-zi)= fi, i= 1,...,N, (4)
j=1
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2 W. R. Madych and S. A. Nelson

can also be solved uniquely for the coefficients a3 . However the resulting in-

terpolant
N

E ajh(z - xj)
j=1

is not necessarily in the class Ch. This class, which is defined below, plays an
important role in our estimates.

The method of interpolation (3) or (4) is often referred to as the multi-
quadric method. For more background and further references see the survey
article by Nira Dyn in these proceedings.

Recall that the generalized Fourier transform of h is given by

~(5)

where c,, is a constant which depends on n, K is a Bessel function of the
third kind of order \, and A (n + 1)/2. For example, in the case n = 2 we
may write

()=(1 + IeI)e-'m
(27r) 211 13

Note that in the general case h has exponential decay at infinity and h( ) =

o(1 1- n-1) at the origin.
Set r(e) = 1/f and let Ch be the class of those tempered dis-

tributions f whose first order derivatives have Fourier transforms w~hich are
square integrable with respect to the weight function r(e) over R'. Define
IfI/R by

IIfII~ xh IDj f)tr( )de.

Note that Il I112 is a positive semidefinite quadratic form on Ch and thus Ilf l,
may be regarded as a seminorm on Ch. It is not difficult to see that Ch is
essentially contained in the class of infinitely differentiable functions on Rn;

the definition implies that derivatives of arbitrarily high order are square
integrable. Another important property of Ch is the fact that the data {fj
can be regarded as the pointwise restriction of an element of CA to X.

As suggested by the definition there is an intimate connection between
the class Ch and the interpolant s(m). We summarize some of the properties
which follow from this relationship.

i. The interpolant s is in CA.

ii. If g is in Ch and g(z,) = fj, j = 1,..., N, then

IIgII = 1I1 - oII' + I1o11 .

iii. The function a is the element of minimal Ch norm which interpolates the
data (zj,fj), j = 1,... ,N. In other words

IlIslh = minIgll, : 9 E CA and g(zj) = fj, j=
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§2. Error bounds

Before stating the basic results we recall some technical definitions.
In what follows the discrete set X is always assumed to be a subset of an

open set Q. Furthermore, there are constants M and e0 such that for every e,
o < e<eo,

S C U{B(z,eM) : f2.} (6)

where Q. z = { R' : B(z,e) C l} and B(z,,e) = {y E R- : ly- zI < e}.
It is not difficult to see that (6) is satisfied if Q is an ellipsoid or parallelpiped
in R'h; more generally, (6) is satisfied if Sl satisfies an interior cone condition.
Finally we define the parameter d by

d = sup inf ly - zI.
vEfl zEX

Note that d depends on both Q and X; it is a standard measure of how well
Ql is covered by X.

Theorem. Suppose f is in C, and f(zj) = fj, j = 1,... ,N. Given an integer
k > 1 there are constants C = C(k,O) and do = d(k,Q) such that if d < do
and the multi-index v satisfies I., I < k then

IlD'(f - s)Ilt_(n) < Cdh-1YIlIfIIh.

Of course the norm on the left hand side of the above inequality is just
the usual L' norm taken over Ql. We also remind the reader that, whereas
Izl normally denotes the Euclidean norm of z, in the case of multi-indicies Jva
denotes the sum of the components of v.

The argument used to obtain this theorem can be outlined as follows.
First, by virtue of the properties (i)-(iii) listed above, there is no loss of

generality when attention is restricted to the case a = 0. In this case the proof
can be broken down into four steps.

If a, is a compactly supported Borel measure on R ' such that p(z) =
f p(y)da.(y) for all polynomials p of degree less than k then

If(M) -f f(,)da. (y)) _< clfl, f l - zlkdla. I(y), (7)

where c depends only on h, k, and n. Use reasoning similar to that used in [1]
and apply (7) locally in Q with a's supported in a (small ball around z)nX
to conclude that

If(z) :5 Cdk If 1l1, (8)

for all z in D. Next, if f is in Cf, then

lID f iIL- <5 clif 11h (9)

for II 1, where the L' norm is over all of R'" and c is a constant which
depends only on h, n, and v. Finally, 'interpolate' between (8) and (9) to
obtain the desired result.

Details can be found in [2]
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§3. Extensions and limitations

The error bound given above holds for methods of interpolation of the
form (2) and (3) where h of (1) is replaced by a more general function which is
conditionally positive definite of order m. Of course the space Ch must change
accordingly and certain limitations on k may apply.

To be more specific, recall that such an h uniquely determines a non-
negative Radon measure / on R' \ {0} with i = h on R" \ { }. If for some 1,
I > m, this measure satisfies

I~ 2d()< 00, (10)

then the theorem stated above holds with the restriction rn < k < 1.
For example, if h(z) = (1 + Ia12 )a where a is any fixed real number which

is not a non-negative integer then h or -h is conditionally positive definite
of order m where m is any integer greater than a. In this case the Fourier
transform of h is smooth away from the origin and decays exponentially at
infinity. Thus (7) holds for every integer I and the appropriate version of the
theorem holds with Ch defined accordingly whenever the integer k satisfies
a<k<oo.

The discrete set X need not be finite and Q need not be bounded. An
important requirement however is that the numbers { fi} be the values {f( j)}
of some function f in Ch. In the infinite case this requirement may not be so
easy to verify. Nevertheless interesting applications of this result can be had
in the case of infinite X; for example, in various so-called cardinal methods
of interpolation.
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On the Correctness of
the Problem of Inverting the Finite Hilbert Transform

in Certain Aeroelastic Models

W. R. Madych*

Abstract

We indicate methods of ensuring that problem in the title is cor-
rectly posed in the L P sense whenever the derivative of the circulation
function satisfies certain mild conditions.

1 Introduction

In the theory of aeroelastic control systems it is required to solve

(1) f (x) = _)- d

for -Y(y), -1 < y < 1, in terms of f(x), -1 < x < 1. The function f is
assumed to be of the form

(2) f(x) = w(X) + g(x)

where 0o 0 G ( 8s ) d s .
(3) g(x) = 1 7- X+ s
Here w and G are constant multiples of the so-called downwash function and
the derivative of the circulation function respectively.

Formula (1) is often referred to as the finite Hilbert transform of y, see
[3]. For more detail concerning this model of aeroelasticity see [1] and the
references cited there. In particular, f = f' and G = ft in the notation of
[1].

In order to guarantee the correctness of the problem of solving (1) via the
methods in [31, it is necessary to assume that f is in some LP(-1, 1) class' .

*Department of Mathematics, University of Connecticut, Storrs, CT 06268. Partially
supported by a grant from the Air Force Office of Scientific Research, AFOSR-86-01451If J is an interval and p is a positive number then LP(J) is the class of those Lebesgue
measurable functions for which fj IG(z)idz is finite. When p = oo, LOO(J) is the class of
essentially bounded functions on J.



In view of this and the fact that w can usually be taken to be in any class
LP(-l, 1), it is important to obtain a fairly general answer to the following
question: What conditions on G ensure that g is in LP(-1, 1)?

It is the purpose of this note to point out certain natural methods for
obtaining such conditions. Propositions 2 and 3 below contain several typical
results.

2 Discussion

Observe that the integral defining g(x) is a smooth function of x for x < 1
whenever G is locally integrable and satisfies a mild condition at infinity. In
particular, it is clear that g(x) is infinitely differentiable for x < 1 if

(4) f IG(s) ds < 0.

(10 + s

In fact, if 0 < x < 1, we may write

Ig(x)I < (1 - X)- f00 ) aS

and conclude that the only questionable behavior of g occurs in arbitrarily
small neighborhoods of x = 1 whenever f satisfies (4).

It should be noted that condition (4) is quite mild and general. For
example, if G = G, + G2 where G1 is in L'(0, oo) and G2 is in LP(0,oo) for
some p, p < oo, then G satisfies (4).

To understand how G influences the behavior of g in neighborhoods of
x = 1, express the integral defining g as a sum, fo + f;, where e is any
positive number < 1. Since

(o G(s) d+ < s
5) -+3 - +s

it should be clear that the behavior of g at x = 1 is determined by the
behavior of G at the origin. Indeed, if s-*G(s) is in LP(O, f) for some value
of p, 1 :5 p 5 oo, then by virtue of Holder's inequality we may write

(6) 1 G(s) ds X(x,p,ca) [JC ($'G(s)) ds]

where

[Jo 1 /I -X+S)-/
Now, using a change of variable, I may be expressed as

I(X, P, c) = (1- x)'-l/p [je/
- ') (110 )P/(P1 1) ds] -

"
/

2



from which we may easily estimate its size.
We summarize these observations as follows:

Proposition 1 Suppose g is related to G via (3), G satisfies condition (4),
and s-'G(s) is in LP(O, c) for some positive e, some a, a > 0, and some p,
l< p5 oo. Then for -1 < x < l

C(1 - X)C- I/p if a < i/p
(7) Ig(x)I C(1 + log(1 - x)) ifa = 1/p

C f a > 1/p

where C is independent of x.

A result concerning the L P class of g follows as an immediate corollary.

Proposition 2 Suppose G and g satisfy the hypothesis of Proposition 1. If
a > 1/p then g is in Lq(-1, 1) for all positive q. If a < 1/p then g is in
Lq(-I, 1) for all positive q which satisfy q < p/(1 - ap).

By using a slightly more delicate argument, the inequality q < p/(1 - cp)
in the second half of the above proposition can be tightened to q < p/(l -cp)
in the case 1 < p < oo. To see this, use the fact that if a > 0 and x < 1 then

_" <1

to observe that

(8) 1J, G~ dsj: I,,G-(x-1)

where

I00(y) = O-- ds

is the classical Hilbert transform of 0 and, when a > 0,

f_ ) (s)
1a¢(y) = f - Is) ds

is the fractional integral or Riesz potential of €. Here

G' Is-G(s) if 0 << e
C 0 ifs < 0 or $> f.

The mapping properties of the transformation 0 - Isk are well known
and, in view of (8), can be used to make conclusions concerning the behavior
of g. For instance, if 1 < p < e, 0 < a < l/p, and 4 is in LP(-oo, oo) then
I,4 is in Lq(-oo,oo) where q = p/(1 - ap); see [2]. This together with (5),
(8), and Proposition 1 allows us to conclude the following:

3



Proposition 3 Suppose G and g satisfy the hypothesis of Proposition 1 with
the restriction that I < p < oo and 0 < a < 1/p. Then g is in Lq(-1, 1) for
all positive q such which satisfy q p/(1 - ap).

Another method of estimating the left hand side of (8) involves writing

fo as f('-') + f'-) when 1 - x < c, using the change of variables y = 1 - x,
and applying variants of Hardy's inequality, see [2] page 245, to each of the
resulting integrals. This leads to generalizations of Proposition 1 for certain
values of the parameters a and p.

For the sake of completeness we mention that, using similar methods
involving fractional integrals, it is possible to obtain results concerning the
behavior of g in neighborhoods of 1 for other values of the parameters a and p.
Since such estimates require the introduction of certain technical machinery
and the conclusions do not involve LP, we will not pursue the details here.

It may be worth noting that in the notation of [1] G(s) is equal to 0(t-s)
for t < s; it is equal to another expression when s < t. Furthermore ?k is
assumed to be in L1(-oo, 0). In this case our observations imply that if t > 0
then 0b does not affect the L P class of ft. This should be compared with the
conclusions in [1].
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Cardinal Interpolation with Polyharmonic
Splines

W. R. Madych*

1 Introduction

If k is a positive integer an it-variate k-hlarrnonic cardinal spline is a tempered
distribution f on R' such that _kf is a measure supported on the integer lattice
Z' in R n . Symbolically

(1) _.kf(.) = aje(X - j)
j z"

where A is the n variate Laplacian, ._k = AA-I for k > 1, and 6(x) is the unit
Dirac measure supported at the origin. A polyhartnonic spline is one which is
k-harmonic for some k.

The most important uqe of these distributions involves the interpolation of
data {uj} defined on Zn to all of Rn. Thus the cardinal interpolation problem
for k-harmonic splines is Ile following: given a sequence {uj} defined on Zn

find a k-harmonic spline f such that

(2) f(j) = lj

for all j. Besides the basic qutestions of existence and uniqueness other mean-
ingful questions concern the ,ehavior of the spline interpolant in terms of the
data and the effect of the 1parameter k.

In the univariate case. ii = . these splimes are exactly the polynomial car-
dinal splines of odd dcgrc,, iil polynomial growth studied by Schoenberg, [20].

It is the purpose of this i,Ie to describe the properties of these splines in the
general n-variate case. Except for the existence of B-splines, these properties
are remarkably similar to ot(,-e found ii tile univariate case.

Some of these results werw originally announced in [10] and amplified in (11]
where motivation and ot h,, kikgroumd is given. llere we only mention that the
distributional defiiitio() of tlw,,o splines w\lhich is given above is motivated by

*Departmnent of Mathi:oi, .. I4miver~ity ,f Connecticut. Storrs, CT 06268. Partially
supported by a grant froim the, Air Ofiico, Sciczi ilc Research. AFOSR-86-0145



the facts that it is very convenient and easily allows for the unrestrained use of
Fourier transforms. Thus in a certain sense this development may be regarded
as an extension of the carlh work of Schoenberg [19] which used Fourier analysis.

Recall that the classical univariate cardinal splines of degree 2k - 1 and
polynomial growth may be viewed as linear combinations of translates of iXI2k - 1.
Similarly the general k-harnmonic cardinal spline f may be regarded as a linear
combination of translates of the fundamental solution of Ak denoted by Ek(x);
thus Ak Ek(x) = 6(x) and

(3) f(x) = Y a.Ek(x -j)
jEZ"

Note that at this point the correspondence between (1) and (3) is merely sym-
bolic; clearly (1) is meaningful in the tempered distribution sense for any se-
quence {aj} of polynomial growth whereas this is not so apparent for (3).

Interpolation in terms of linear combinations of translates of a fixed func-
tion h is certainly very appealing. It arises naturally when the interpolants
are solutions of certain variational problems: the general idea goes at least as
far back as that of the reproducing kernel Iilbert space, for example see [1,8],
but the first meaningful use of the Fourier transform in this context seems to
be due to Duchon, [6]; usually in such cases h is the fundamental solution of
an appropriate differential or pseudo-differential operator and the interpolant is
often further modified in some way to account for various auxiliary conditions
and restrictions, for example see [6,7,13,15.17,21 and the appropriate references
therein. The classes of posit ive definite and conditionally positive definite func-
tions provide a rich collection of examples of h's which can be used for such
interpolation; various dilate.s of the Gaussian exp (-x 2 ), the so-called multi-
quadric V/1 + 21x2, and the [undamental solution Ek(x), 2k > n + 1, are specific
examples; for for details adt, more examples see [2,7,13,16]. When the data is
given on a lattice the univariate B-splines are perhaps the most popular exam-
ple of such h's, see [20,181: t lie recently developed theory of box splines seems
to be an attempt to generalize this concept to the multi-variate case, see [3,5]
and the pertinent articles in this volme.

The notation used here is standard, if necessary see [11 for a more detailed
explanation. Here we merely remild the reader that there are several common
normalizations for the Fourier transform. In this note we use

for the Fourier transforin t., of( a test fiuction 1 ,.

2 Basic properties

Suppose f is a k-harmnoic ',, rdiuah spl iti. Then is c learly analytic on R\Z
and, in order to ensure thwi Ipoijt cvaluation on Z" is meaningful, we assume] "2



that f is continuous on all of R'. In this case, if 2k < n + 1 it is well known
that f must be a k-harmonic polynomial; this follows from the behavior of the
corresponding fundamental solution at the origin, see [9] for details. Now, the
class of k-harmonic polynomials is too exclusive to interpolate a sufficiently
broad class of data {j} on Zn. For example, it is not difficult to see that there
is no k-harmonic polynomial f such that f(0) = 1 and f(j) = 0 forj in Zn\ {0}.
For this reason we restrict our attention to the case 2k > n + 1 in what follows.

Let SHk(R n ) denote the class of k-harmonic splines on Rn and recall that
C'(Rn) is the class of functions which are k times continuously differentiable
on R'.

Proposition 1 f 2k > n + 1 and f is in SIk.(Rn) then f is in C-"-l(Rn).

Recall that a sequence { uj } is of polynomial growth if there are constants c
and p such that
(4) iuji c(O + j)P

holds for all j in Zn. The class Y3" is the collection of those sequences for which
(4) holds for p = a. Siilarlv a continuous function f is of polynomial growth
if there are constants c and p such that

(5) 1f(x)j :_ c(1 + Ix)P

holds for all x in R'. The class SII.(R n) is the collection of those k-harmonic
splines for which (5) holds for p = a.

Proposition 2 If 2k > n + I and f is in SHk(R ' ) then f is of polynomial
growth. In other words S I[(1? )= USII.(Rn) where the union is taken over all
a < 00.

The last proposition implies that in the univariate case the class SHk(R) is
not quite as general as the corresponding class S2k-1 considered by Schoenberg.
It fails to contain the subspace of IS2k-i consisting of the null-splines, see [20,
Lecture 4, Section 3].

Since the elements of S1k(R") are of polynomial growth it is clear that
in order for cardinal interpolation problem to have a solution a necessary re-
quirement on the data sequence is that it also be of polynomial growth. As we
shall see this requirement is also suflicient. We begin by first considering the
fundamental functions of i t t'j)olat ion.

Consider the distribution [.. which is defined by the formula for its Fourier
transform:
(6) Lk(6) = (2- )- /  I-2k

_j z,, j - 2,rjL-2 k

If k is an integer such that 2k > n + 1 then Lk(x) is well defined as an absolutely
convergent integral.
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Proposition 3 Let Lk be defined by the formula for its Fourier transform (6),
where k is an integer which satisfies 2k > n ± 1. Then Lk has the following
properties:

(i) Lk is a k-harm onic cardinal spline.

(ii) For all j in Z"

(7)L(j) if j 0

(iii) There are positive constants A and a, depending on n and k but independent
of x, such that

(8) Lk(X)I < A exp(-aIxj)

for all x in R ' .

(iv) Lk has the following representations in terms of Ek:

(9) FA(,) = Z ajEk(X -j)
jEZ"

where the aj 's satisfy laji < B cxp(-btjI) and the positive constants B and b
depend only on n and k. The sriCs co'eprgs absolutely and uniformly on all
compact subsets of R'.

Item (i) is a readily transparent consequence of the definition while item (ii)
easily follows from the fact that for j in Zn

(10) Lk(j) = 1 'J- d

where
Q " { ( C , . . .c , , ) : < c < n) 1 .. . , }

The remaining items are COISConsCceS of the analyticity of Lk.
The following theorem concernls the cardinal spline interpolation problem

and the nature of its solutions. It is essentially a routine consequence of Propo-
sition 3 except for the miiuiqu('nCss ass rtion. Details may be found in [11].

Proposition 4 If {uj}, j in Z"L, is a scquence of polynomial growth and 2k >
n + 1 then the following is truc:

(i) There is a unique k-harmonic spline f such that f(j) = uj for all j.

(ii) Ifuj is in Y' then f is in SI'k(R").



(iii) Every k-h armonic sIpline ihas (a itnique representation in terms of translates
of Lk, namely

The expansion (11) convciycs absolutely and uniformly in every compact subset
of Rn.

3 Other Properties

Having given the basic e.xi.Stence and uniqueness result concerning the cardinal
interpolation probiemn for k-harmonic splines we briefly address the following
questions:

How is the behavior of (he data scquence {Utj} reflected in the behavior of its
k-harmonic spline inteipolan t -

Most of the results knowni in the univariate case have an appropriate ana-
logue in the general case. For example, item (1i) of Proposition 4 addresses this
question. Other results include approp~riate analogues of [4]; namely, if {ujj or
certain finite differences of it arooin LU(Z") the the corresponding k-harmonic
spline interpolant or appropriate derivatives are in LP(R').

What about the variational properties of these splines?
The appropriate analogue of results cited in [20, Lecture 6, Section 11 hold

in the general case. See [12] for details.
If the data sequence I'S fixrcd uwhat is the behavior of the cardinal k-harmonic

spline interpolant as k -*,o
Again, most of the result,. which hioldI in the univariate case have an appro-

priate analogue here. A result wvhiich seems to be new even in the univariate
case is the following: SuppoISe. f is suchI that the support of f is in Qfl and Sk
is its cardinal k-hiarmionic splinue interpolanit. namely, sk(j) = f(j) for j in Z'.
Then if f satisfies a mihld condition in a neighlborhood of the boundary of Q'
then

himi 4k*(.V) = f(X)

uniformly on comp~act sulc~of l?" For sonc details see [14j.
Suppose s(X) is; thre k-hI rInonic 'spline intcrpolant of f on the dilated lattice

aZn. W~hat is the dryru( ul(Iipproxiination in te rnts of a?
Recall that q(x) rcprouc ic any k-hiarmonic polynomial-, in particular, it

reproduces any polvyioitij; of degree < 2k - 1. This together with routine
arguments involving (8) iplics that J.s(.r) - f(.v)l =O(a 1k) as a -+0 whenever
f is in C~k( R") wvit i, In juIuleiatives of order 2k. Similar results hold with
LP norms. Inter-pol 1 ion a t',t uetits impti*lv app)lropriate results for less regular
f's. Thus appropriate imt t-es ol all d ie it n ivariate res ults hold in the general
case.

Wlhat abouit niinvr~ ril iph tif liiiIion.'



The fundamental spline Lk(X) can be easily evaluated quite rapidly and
accurately via the fast Fourier transform. See Figures I and 2. In view of this
the computation of most k-harmonic spline interpolants should should pose no
significant difficulties.

lhat about further generalizations?
There are many directions in which one can extend certain aspects of this

theory. For example, by replacing 1-2k and its periodization in formula (6)
by an appropriate function 6 which decays sufficiently fast at oo it is readily
transparent that the corresponding analogue of Lk, call it L, will be continuous,
will certainly satisfy (10). and thus will also satisfy (7). If 0 is sufficiently
regular then L will have corresponding decay properties at oo. In view of this
it is quit natural to consider interpolants of the form

(x') = 1 f(j)L(x - j)
jEZ"

Typical 6's for which the basic properties of the above type interpolants are
particularly transparent are 6(e) = P()-' where P( ) is a homogeneous elliptic
polynomial of sufficientlv high degree and 9(e) =(j{I2) where g(C) is a is a
univariate function which is analytic away from the origin and decays sufficiently
fast at oo on the real axis. For some details in the second case see [2,7].

Another direction in one could consider extensions is the replacement of
the lattice Zn by a more general discrete set X. The case when X is finite is
essentially treated in [G.15.,17. The general infinite case is not so clear.
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Hilbert Spaces for Estimators

W. R. Madych"
Department of Mathematics

University of Connecticut
Storrs, CT 06268.

Abstract

We outline a general procedure for reconstructing data from measure-
ments based on a linear model. Roughly speaking, the method involves
the construction of a Hilbert space on which the measurement functionals
are continuous; the desired estimator is then simply the minimum norm
solution in this space. Under certain conditions this construction results
in a reproducing kernel Hilbert space. An application to seismic borehole
tomography is included to illustrate the method and its uses.

1 Introduction.

In various circumstances one obtains data concerning a given quantity with
the objective of determining certain features of that quantity. If one cannot
measure the desired features directly then these features must be determined or
approximated from indirect measurements. The case of indirect measurement
raises a host of interesting questions and problems, some of which can be roughly
summarized as follows:

* Do the measurements determine the desired features uniquely?

" If not, then how well can one approximate the desired features from the
measurements?

* Give a constructive method for determining or approximating the desired
features from the measurements.

It is the purpose of this note to address the third item on this list when the
relationship between the desired quantity and the measurements is linear. The
first two items are treated only incidentally.

"Partially supported by a grant from the Air Force Office of Scientific Research, AFOSR-
86-0145
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Observe that these questions are essentially mathematical in nature and can-
not be effectively addressed without a mathematical model relating the mea-
surements to the desired features. The general setup is as follows:

The measurements are a collection of scalars, fi ... , f,, which are function-
als of a phantom f, the desired or unknown quantity. In particular if we call
these functionals 4,..., 4, then fl (f), .... f, = 1.(f). The desired quan-
tity may be the phantom f itself or certain features of f which may be modeled
by other functionals of f. Of course in most instances one can only hope to
reconstruct an approximation of f or such functionals. In what follows we will
denote such an approximation of f by f.

In the case when the functionals 4,.... , are linear and are continuous
on some Hilbert space 7, which presumably contains the phantom, a popular
and natural choice for f is the orthogonal projection of f onto the subspace
generated by these functionals. This projection can be computed from the given
data by well known methods and has several interesting properties. Perhaps the
most significant of these is the fact that the mapping (f f ..... f, ) --+ f is linear.
Furthermore this projection is that unique element of minimal 7 norm which
satisfies the data and the resulting estimator is optimal in a certain sense, see
[4] and [8].

Unfortunately, in many circumstances, the linear functionals are not contin-
uous on some obvious Hilbert space nor is the phantom necessarily a member
of such a space. In this paper we address a fairly common situation of this type
which may be described abstractly as follows.

The phantom f is an element of some ambient linear space W and the set
{4, .... ,4 is a collection of linearly independent linear functionals defined on
a linear subspace of W which contains f. The collection {0j), j = 1 .... is a
complete orthonormal set in some Hilbert space N such that 4(0j) is a well
defined scalar for all j and k. Of course 7i is assumed to be a subspace of W
but the linear functionals are not assumed to be continuous on 7 The values
l(f)..... 4(f) are known and the problem is to find an approximation f of f.

In this case, motivated by the continuous example, we construct a Hilbert
Sspace 7 on which the linear functionals 4, .... , are continuous and take the
approximation 1 of f to be the orthogonal projection of f onto the subspace
generated by these functionals in 74. The details of this construction and its
properties are given below in section 2.

We indicate the connection between our approach and the theory of repro-
ducing kernel Hilbert space in the first subsection of the third and final section.
An application of the method to a model of seismic borehole tomography is
given in subsection 3.2.

We wish to thank Israel Koltracht who showed us the results of as yet unpub-
lished and ongoing work concerning the null space of the matrix M mentioned
in connection with the basis defined by equation (31) in subsection 3.2.
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2 Details.

First we summarize the basic setup.

9 W is a linear space which contains the phantom1.

* 01, 42, ... , is a complete orthonormal set in a Hilbert space . N/ is a
subspace of W.

* ..,.. , 4is a collection of linearly independent linear functionals such
that 4(0,j) is a well defined scalar for each k and j. In particular, we
assume that the n sequences {4(0), 4 (02) .... } are linearly independent;
furthermore, Lj(f) is a well defined scalar for each j. In other words, f
and the sequence 00, - -... , are in the domain of each ti.

We emphasize that the functionals Lj are not necessarily defined on all of W or
W and of course they are not necessarily continous on X. Also, f is not assumed
to be in 7.

The problem we address below is the following:
Given the values ti (f)4... ,(f) find an estimator f of f.
As is customary, symbols (f, g) denote the inner product of two elements, f

and g, in t and i = (f, Oi), j = 1,2 ..... Thus {fji, 2,...) is the sequence
of Fourier coefficients of f with respect to the complete orthonormal system
1, , .... , and N may be regarded as a collection of such sequences via the

standard identification. The norm 1f 11 of an element f of N is defined by 111f12 =

(f, f) of course. In the discussion below, we assume the field of scalars to be
the complex numbers.

2.1 Simple interpolation.

Consider the matrix

(I) Al = ((,) i, j = 1,.... ,..

This matrix is not necessarily invertible in the general case. However, in view
of the fact that the sequences {t(01), tj(42) .... ), j = I,...,n, are linearly
independent, it should be clear that, by reordering the O,'s if necessary, M has
a non-zero determinant and hence is invertible.

In any case, if M is not singular, we can always find an element f which
satisfies(2) =kl t k~ , .. ..k
by simply setting

(3) 1 ao
j=1
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where the a3 's are scalars which satisfy the system of equations

n

=1

Since M is invertible, a unique set of such a3 's exists.
Note that this method can be applied even if the basis elements 01,. ,,

are not necessarily orthogonal as long as the corresponding matrix M given
by (1) is not singular. The resulting estimator, f is a simply a linear corn-
bination of 01,.. .,O.which interpolates the data II(A)... ,(f, namely,
4M1 = 4()..,()= In(/). The properties of such a solution depend
on the relationship between f, the Vs, and O's and are not well documented in
the general case.

In the development below we give an alternate method for computing a
approximant 1 in the general case.

2.2 A Hilbert Space Approach.

Let A,, j = 1, 2,.. ., be a sequen0ce of non-negative real numbers such that

(5) 1 hi 4 (-j )1 < 0

j=1

for all k. Set to3 = h7' and consider the subspace H, of ?i consisting of those
elements f for which

(6) huhil = ( I1,12 W,)1/

is finite. (In the case h, = 0 the term jj:12W, is taken to be zero if 1, is zero;
otherwise it fails to be finite.) The Hilbert space 74 is the completion of H, in
the norm 11f 11, defined by (6). The inner product in 74 is given by

00

(7) Vai O( I = E() j =j W ... n

j=1

Proposition I The linear functional s t,, are continuous on 74.

Proof Forf in 7a we may write

14(fI = 1)O,40)
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Since cl = °=O 1k(Oi)1jhj is finite the last inequality may be re-expressed as

which implies continuity of L.

Proposition 2 If the sequence hi, j = 1,2,..., is bounded then ? is a sub-
space ofT/. If, in addition, all the hj 's are non-zero, then 7/ 1 is dense in 7 and
the set t,..., 4 is linearly independent in i1.

Proof To see the first statement simply write

00 00

Ef1 = jj <~i <maX{hjlZf 1,12W, = MaX~h,11UfII.
j=1 =

The second statement follows from the fact that the subspace consisting of those
f's which have only a finite number of non-zero Fourier coefficients is dense in
both U/ and X ?

Recall that if t is a continuous linear functional on 7/X then there is an
element g of 7t, so that 1(f) = (f,ge)i. In fact we may identify I with gi.
Doing so, it is clear that

00

for k = 1b n. These series converge in , by virtue of (5). Furthermore, if
the W's are bounded then these series also converge in X/ The scalar product of
1k and t. in W,1 is given by oof

j=1

Note that the collection t.. ,n is not necessarily linearly independent as
a subset of W/i; this depends on the choice of the h's. However the h's can
always be chosen so that t ... n is linearly independent and, in what follows,
we always assume that this is the case. In particular the matrix

(10) L =((t , t )

whose elements are defined by (9) is not singular and is positive definite.
Let s(f) be defined by the formula

s•f ah



where the coefficients ak are computed from the data t(f),...,n(f) by solving
the system of linear equations

n

(12) EZa(4, t) t(f) , = I ....
k= 1

Since L is not singular there is a unique set of ak's which satisfies (12) and thus
s(f) is well defined. Observe that

(13) tm(N(f)) = (s(f), .) = tM(f)

for m 1,...,n.
In view of (13) we now have a method for constructing an estimator j of f,

namely f = s(f). Furthermore, if we choose to regard f as an element of 7
then it is clear that s(f) is simply the orthogonal projection of f onto S in 71.
Here S denotes the subbpace of N4 spanned by t, ... ,t.

2.3 A biorthogonal representation.

A particularly elegant way of representing s(f) is in terms of elements A,. . ,An
which are biorthogonal to t ... , in S.

Recall that a collection An..,,A, is said to be normalized biorthogonal to

4,.. ., inS if it is a subset ofS and

(14) (Ai,14)l=6j, j,k=1,...,n
where 6j, is the Kronecker delta. Here S, the subspace spanned by .... ,
is regarded as a closed subpace of 7 whose inner product coincides with that
of N7.

If A1 ..... A, is normalized biorthogonal to t t .... ,1 in S then it easy to
check that

(15) AV= bkA , k= ,..., n.
j=1

The coefficients bj can be found by solving
n

(16) bkbj(tj,41)l = 6m , k,m =1....n,
j=1

in other words, the matrix (bkj) is simply L- I where L is given by (10). In
terms of such Ak's s(f) has the representation

n

(17) a(f) = t(f)A..
b=1

It should be mentioned that in spite of the fact that representation (17) is
elegant, in specific examples it may be awkward to use and other representations
may be more convenient. This will be illustrated in the examples below.
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2.4 Questions.

Now that we have a method for constructing an approximation i of f, namely
f = 8(f), two questions need attention: (i) What is the relationship between f
and I? (ii) What difficulties, if any, are there in computing ?

From the practical viewpoint the second question seems more significant than
the first. For instance, if the approximant is essentially impossible to compute
with any level of accuracy then questions involving degree of approximation
are primarily of academic interest. On the other hand, it seems that the first
question should not be completely ignored, even m the applied setting; certainly
it must be of some significance to know relationships between the computed
quantity and the desired solution.

In our setup the answer to the second question depends on the conditioned-
ness of the matrix L defined by (10) and the ease and accuracy at which (11)
can be evaluated. Any questions concerning computability depend on the spe-
cific choice of I's, O's, and h's and is very difficult to address in the general
case. Furthermore, it should be mentioned that these can be controlled to some
extent.

A quantity which is essential in addressing the first question is f which is
often completely or partially unknown. On the other hand, it is possible to
obtain error estimates in terms of certain nonlinear functionals of f. These
nonlinear functionals include various norms of f and may vary from case to
case. For a nice discussion concerning the type of information needed to obtain
estimates of accuracy in many of the classical approximation problems see [4].
Below we give an estimate of the error ilf - s(f)II in terms of JufJhI and other
parameters associated with the 's and O's.

2.5 A general error estimate.

Recall that if f is in X then s(f) is the orthogonal projection of f into S, the
subspace spanned by i .... , , in 71. This implies that
(18) It! - ,,(f)112 = I!11? - I1(f)112

whenever f is regarded as an element of X1.
The following proposition gives an estimate of the error in the 71 norm.

Proposition 3 Suppose the matrix M defined by (1) u invertible, the sequence
{h1} is bounded, and f is in 74. Then
(19) Of! - S(U)M _< C11/11
where

n
i < max{(Vh-7 +I IPhE ) 2,

and p is the apectral radius ofM-1 .
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Proof First observe that it suffices to prove the proposition in the case

(20) tk(f)=0, k=l ....n.

For if the result holds in this case then in the general case, since 1k (f-s(f)) 0
for all k and s(f - s(f)) = 0, we may write

(21) Il! - s(f)I _ Slf - S(f)Ili.
Inequality (21) together with the fact that 11f-s(f)jj _< Ilfll imply the desired
result.

Now suppose that f satisfies (20). In other words
O0

j=1

or

(22) E ,.(Oj)j - tk(Ojiji , k = 1, ..... n.

j=1 j-n-,

If we denote the right hand side of (22) by yk, set y = (yi, y,)T, and set

z = (f 1 ,....fn)T then (22) may be rewritten as

(23) Mz = y

From (23) it follows that

(24) 1zl 2 = IM-y 1i 2 < p21vy2

where Iz12 denotes the sum of the squares of the components of z and p is the
spectral radius of M-1. An application of the Schwartz inequality gives

and since term in the first set of parentheses is dominated by 11f112 we may write

Finally
00 00

(28) I12< m< x {h } If12hPj < mx {j}llf
-- jtn+1

j=n+l j=n +l

Since

(27) II/1l2 = FII2+ F: I/j12
j=1 j=n+l

the desired result follows from (27) together with (24), (25), and (26). U
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3 Examples.

3.1 Point evaluation functionals.

Suppose that the ambient space W is a collection of functions defined on some
set f0. If z is an element of Q then the point evaluation functional 4, is defined
by 1.(f) = f(z) and generally makes sense for some, but not necessarily all, f in
W. In many such instances there are readily available collections of functions,

2, h,..., which are orthonormal with respect to appropriate scalar products
(b, b) and for which 14(Oj) is well defined, for all j. Whenever this the case one
can take W to be the Hilbert space generated by such a sequence. One can then
follow the procedure outlined in subsection 2.2 to obtain a Hilbert space N, on
which 1, is a continuous linear functional.

If 74 is such that 4. is continuous for all z in fl then it is a reproducing
kernel Hilbert space. The theory of such spaces is well documented and has
found wide application; a detailed account of the basic theory may be found
in [2], examples and various applications may be found in [3], [41, [6], and the
references cited there. In our setup the reproducing kernel K is given by

(28) K(z, y) E _ hj~T.-OI (0j) .

j=1

The variational Ier .y of splines may be viewed in some sense as an ap-
plication of the theory of reproducing kernel Hilbert spaces. Cardinal splines
are a nice examrp'e of the use of the biorthogonal representation in this case,
for instance see [1]. A comparison of the univariate polynomial B-splines with
the corresponding cardinal splines also shows how other representations can be
considerably more convenient in certain applications.

3.2 Seismic borehole tomography.

Borehole tomography plays a significant role in seismic image reconstuction.
The linearized well to well model is particulary popular, for example, see [5]
and (7]. The general setup may be described as follows:

The ambient space W of phantoms f can initially be taken to be the class
of functions, f(z, y), which are Lebesgue measurable on

= {(z,y) : 0< z< a, 0< y< b),

where a and b are fixed positive numbers. The linear functionals are averages
along straigth lines between points on opposite vertical boundaries of 0.

More precisely, let

(29) z(t) = ut
Y(t) = vt+yo

9



be the parametric representation of the line from (0, y0) to (a, yl); here c =

Y1 - Yo,
r= ia2-C 2,

iu = a/r, v = c/r, and t is the arclength parameter, 0 < t < r. The cor-
responding linear functional 1, evaluated at a feasable phantom f, is defined
by

(30) 1(f) = !(z(t), y(t))dt

where z(t) and y(t) are given by (29) and the integration is taken with respect
to the one dimensional Lebesgue measure dt.

Note that I is not defined on all of W, namely, 1(f) is defined only for those
phantoms f for which the right hand side of (30) makes sense. Indeed, if we
take i = L2 (fl), the class of function which are square integrable with respect
to Lebesgue measure on 0 and with the usual scalar product, then 1(f) is not
defined even for all such f.

The mathematical problem of well to well tomography then is to approximate
f from a collection of averages t(f) corresponding to different pairs of endpoints
(0, yo) and (a, yi).

Physically the quantity 1(f) represents the travel time of a signal, which
may be acoustic, between the coordinates (0, yo) and (a, yi). The phantom
f represents the 'slowness' profile of a cross section of the earth, represented
by 0', between two bore holes, represented by the vertical boundary lines of
11. For more details concerning the physical interpretation of this setup see
the references cited above; in particular [7] gives several examples of different
geometries used for data collection.

For the sake of definiteness we confine our attention to a specific geometry for
data collection. The reader should have no difficulty in making the appropriate
adjustments for other typical geometries.

The geometry we will consider is the following: Take

zi =i ,.m1

and let tj be the linear functional defined by (30) with yo = zi and y, = zj,
i,j = 1, ... ,m. (It should be clear that in this case it is natural to index the
functionals with multi-indicies.) The problem then is to find an estimator, i,
using the data 1,j(f), i, j = ..... m. In the notation of section 2 note that
n - m2 and the values of n functionals of the phantom f are known. Clearly
these functionals are linearly independent.

It is well known that this problem is notoriously il-posed. For example, it
is quite apparent that any two phantoms whose difference is a function g which
depends only on the z variable and is odd on the interval 0 < z < a, (namely,
g(a - z) = -g(z) ) cannot be distiquished from the data.
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Nevertheless, because of the significance of this problem, various solution
techniques are employed to obtain estimators. A popular technique is the so-
called series expansion method; this is essentially simple interpolation described
in subsection 2.2. The most common choice of basis functions seems to be the
set Oij, i,j - 1,... ,m, also doubly indexed for convenience and defined by

i i-La <zx< a and i:-b <y:5_-b
(31) 1ij(z'Y) 0 otherwise.

The reason for this choice appears to be the pixel-like nature of such a basis.
Unfortunately the corresponding matrix M, see formulas (1), (3), and (4) in
subsection 2.1, is not invertible. For example, in the case m = 20 the number
of degrees of freedom is n = 400 but the corresponding 400 x 400 matrix M has
only rank 344. However the least squares solution of minimun norm of (4) can
be found and the resulting estimator (3) calculated. Apparently such estimators
seem to give acceptable results in many instances.

On the other hand, since the functionals tf, are linearly independent, the
method of subsection 2.2 will at the very least result in estimators all of whose
n degrees of freedom are constrained by the data.

A fairly natural choice of W in this case seems to be 7'-- L2 (Q). There are
many well known complete orthonormal sequences in this space which one can
utilize to apply the procedure of subsection 2.2. For example, a sequence on
which one can easily evaluate the functionals under consideration in closed form
is given by

(32) Oi&(-, Y) k ~ ~ ) , kI = 0, 1,.

where
Oo(z) = I and O'k(z) = Vrcos(krz), k - 1.

In the case both k and I are greater than zero O6ki may be expressed as

which is useful for evaluating (30) in closed form. Since the final expressions are
rather cumbersome and calculation tedious but straightforward, we leave the
explicit evaluation of (30) as an exercise for the interested reader.

Possible choices of h&,'s which will guarantee that the series

k=O I=0

converges and the corresponding matrix L defined in subsection 2.2 is not sin-
gular are
(33) hki = (1 + k2 + 12)-1-,

11



where e is a positive constant and

f 1 if0<k<n2 and0< I < n
2

(34) h= 0 otherwise.

We emphasis that in addition to the O's given by (32) there are many other
possibilities. Currently I. Koltracht and the author are conducting numerical
experiments in order to obtain quantitative comparisons of the estimators arising
from this procedure with those arising from conventional methods. The results
of these experiments will be reported on elsewhere.
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Translation Invariant Multiscale Analysis

W. R. Madych*

Abstract

The notion of multiscale analysis introduced by R. IR. Coifman and
Y. Meyer is considered and the translation invariant case is character-
ized.

1 Introduction

Recall that a dyadic multiscale analysis of L2(Rn) is an increasing sequence
V = {Vj : j = ... ,-1,0,1,2,...} of closed subspaces of L2 (Rn) which has
the following properties:

(1). Uj _. V is dense in L2(R') and f°__ V, = {o}.

(2). f(x) is in Vj if and only if f(2x) is in Vj+.

(3). There is a lattice r in R' such that for every f in Vo and every 7 in r
the function fj is in V. Here and in what follows we use the notation
f-(x) = f (x - -Y).

(4). There are two positive constants C2 >_ C > 0 and a function g in Vo
such that Vo is the closed linear span of g-, -y E r, and

c la-,l < _ lyg.,(x)ld < C22 la.,I
-yer yer -YEr

*Department of Mathematics, University of Connecticut, Storrs, CT 06268. Prelimi-
nary report of work partially supported by a grant from the Air Force Office of Scientific
Research.



An introduction to the subject may be found in [1,2]. A basic property
of a multiscale analysis V is the following:

(5). There is a function 4, in V such that the collection {1},Er is an or-
thonormal basis in V.

This fact may be regarded as a substitute for (4) and plays an important role
in what follows.

A dyadic multiscale analysis is translation invariant if all the translates
off, {ff : y E R'}, are in V whenever f is in Vo.

The canonical example of a translation invariant multiscale analysis of
L2(R) is when Vo is the collection of those functions in L2 (R) whose Fourier
transforms are supported in the interval [-7r, ir]. A natural choice of 4, in
this case is given by sin irx

7iX

The point of this paper is to give a characterization of translation in-
variant multiscale analyses. For the sake of clarity in what follows we will
restrict our attention to the case n = 1 and r = Z, the lattice of integers.
The statements and arguments in the general case are completely analogous
to this basic case.

We now briefly digress to list some of the conventions which are used
here: The Fourier transform f of a function f is defined by

=m -L -. Cf (x)dx

whenever it makes sense and distributionally otherwise. Basic facts con-
cerning Fourier transforms and distribr Lions will be used without further
elaboration in what follows. To avoid the pedantic repetition of "almost
everywhere" and other modifying phrases which are inevitably necessary
when dealing with functions defined almost everywhere, all equalities be-
tween functions and other related notions are interpreted in the distribu-
tional sense whenever possible. The term support is also used in the dis-
tributional sense; in particular the support of a function f in L2(R) is a
well defined closed set. If W is a collection of tempered distributions then
W is the collection of Fourier transforms of elements of W, in other words

= {f : f = for some g in W}. For a subset f0 of R and a real number
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r the sets rFl and fi + r are defined by rl = {x x = rw for some w in F}
and fP + r = {x : x = w + r for some w in fl}; L2(fj) is the L2 closure of the
subspace of those functions in L2(R) whose support is contained in fl. For
notational simplicity we use Q to denote the closed interval [-ir, 7].

We can now conveniently state our main observation.

Theorem Suppose V is a translation invariant dyadic multiscale analysis
of L2(R). Then Vo = L2(fj) where fl is a closed subset of R which has the
following properties:

(a). fl C 2f0.

(b). {fn + 2irj} n{f + 2rk} is a set of Lebesgue measure 0 for any pair of
integers such that j # k.

(c). Uk-.f- + 2rk} = R.

(d). Ljk=, L2 (2 kf) is dense in L2(R).

Conversely, if Vk, k E Z is defined by f& = L2(2 k f) where f0 is a closed subset
of R which satisfies the properties above then the sequence of subspaces {Vk}
is a translation invariant multiscale analysis of L2(R).

Remark 1 In view of the example given above it is very tempting to con-
jecture that the set fi in the Theorem must be of the form fl = Q + a for
some real number a which satisfies 7r < a < r. Certainly such 11's satisfy
the desired conditions. However the conditions of the Theorem are satisfied
by fl's which need not be connected as the following example due to Rudi
Lorentz shows.

Remark 2 Consider

fl. = [-1, 1]U[2" + 1,41 -11
1b= [-5,5]
fie = [-1, 1]

= [0,2r].
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It is not difficult to verify that each fl, listed above is a closed set which
fails to satisfy condition (a) but satisfies the remaining conditions in the
Theorem. These examples show that conditions (a)-(d) are not redundant.

Remark 3 Note that condition (a) implies that 0 is contained in M2. In
addition to this it is clear that if f0 contains a neighborhood of the origin
then it satisfies condition (d). In view of this it seems reasonable to suspect
that subsets Q which satisfy the conditions of the Theorem must contain an
open neighborhood of the origin. That this is not the case can be seen by
considering the following example of fn:

00 
00

U [-(2 - 2-;)2-kr, -2- } U[o, 7rj{ U [(2 - (2 - 2k)2k)r, (2 - 2k)r]}
k=1 A=1

Remark 4 In view of the examples listed above it may be of some interest
to obtain a significantly more lucid description of the set f0 than that given
in the Theorem.

A corollary concerning wavelets generated by V is recorded at the end of
Section 2.

2 Details

We begin by establishing a basic lemma. First recall that the indicator
function of a set fl is usually denoted by XG and satisfies

o 1lif Efl

0 otherwise.

Lemma Suppose VJ is a translation invariant dyadic multiscale analysis of
L2 (R) and 0 is a function whose existence is guaranteed by (5). Then

14' = xQ
where Xo is the indicator function of a closed set fi which has properties
(a)-(d) in the statement of the Theorem.

Let fl be the support of 4. To prove the lemma we will first show that fl
satisfies property (b).
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Recall that (5) implies that for all f in V we may write

(6) f() =g()

where g is 21r periodic and square integrable over Q. In particular, since Vo
is translation invariant, 0S, is in V so setting a = -y we may write

for some such g. Hence

eia€-2rm) (C - 27rm) = g( - 27rm)( - 27rm) = g( )$( - 2rm)

which implies that

on fl + 2irm. For two different values of m the last equality implies that

e -2ij) - e
i
a(t

- 2
sk)

on {fi + 2rj} fl{n + 2rk}. Re-expressing the last relation as

ei&(t-2rk)(ei2ira(k-i) _ 1) = 0

it is clear that either a is an integer, j is equal to k, or {fl +2rj} n{il+2rk}
is a set of measure zero. Since a may be any real number we conclude that
{Ifl + 27rj} fl{fl + 27rk} has measure zero whenever j 9 k.

Now, since 3k() = e-kh4,( ), k E Z, are orthonormal, we may write

(7) JR O(x)t(x)d = JR CesmtI$( )I2d =

I i(E C- 7j 1 x 1when m=O0
Q jrZ 0 otherwise

where m = I - k. The last equality implies that

jEZ
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on R and since {f + 2irj} n{F + 27rk} has measure zero whenever j # k we
may conclude that

and
U IQ + 27rk} = R.

kEZ

To see (a) observe that (2) and the facts demonstrated above imply that

xn() = h( )xn( /2)

where h is 41r periodic and square integrable over 2Q. Since X2a( ) =
xn(f/2), the last equality involving h implies that Xn vanishes whenever
X2a does so f0 C 2f0.

Finally, the fact that Ljk=, L2(2'Z) is dense in L2(R) is an immediate
consequence of property (1). The proof of the Lemma is complete.

Now, suppose 0 and fl are as in the Lemma and its proof. Since Vconsists of functions f which satisfy (6) it is clear that 1o is contained in

To see that Vo = L2(fQ) let f be any element in L2(fn) and let h be definedby

0 otherwise.
By virtue of the properties of f established above it is clear that

= ( - 27rj) k~)

and
=

where

Thus f satisfies (6) and hence we may conclude that L2(fQ) is contained in
V0.
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The Lemma together with the last observation imply the first assertion
of the Theorem.

To see the converse, let V be the sequence of subspaces {Vk}, k E Z,
defined by 1k = L2 (2'fl) where fl is a closed set which satisfies properties
(a)-(d) of the Theorem.

The fact that V is translation invariant and, in particular, satisfies prop-
erty (3) with r = Z is an immediate consequence of the definition. Property
(2) is also immediate. That V is an increasing sequence of subspaces and
UkEZ Vk is dense in L2(R) are consequences of properties (a) and (d).

That nkEz Vk = {0} follows from the fact that the measure of f? is finite.
Indeed, its measure is 2v which can be seen from

fR xn(2)d = Xn/ J2 Xn()d =!J Z xn( - 27rj)dt = 27r
jez Q  jeZ

by using properties (b) and (c).
Finally, to see property (5) take

1

and use properties (b) and (c) to write (7) which shows that Ok(x), k E Z,
are orthonormal and, for f in Vo,

( l) - -2rk)

or

kEZ

which shows that they are complete in V.
This completes the proof of the Theorem.

Remark 5 Suppose V is a translation invariant multiscale analysis and fl is
a closed set such that Vo - L2(fl). Then if Wo is the orthogonal complement
of V in 1, Wo = L2(T) where T = 2fl \ fl. Let 0 be such that the set
{ t' :k E Z} is an orthonormal basis for Wo. Such a ' may be referred to
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as a wavelet. Using reasoning analogous to the proof of the Theorem, it is

clear that 0 is a wavelet if and only if
1kb =X XT.

Now, an analyzing wavelet in the sense of Meyer, [11, is globally integrable
and hence its Fourier Transform must be continuous. Clearly 0 is not such
an analyzing wavelet.

Corollary A translation invariant multiscale analysis cannot give rise to
analyzing wavelets in the sense of Meyer.
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